miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems
- PMID: 32374865
- PMCID: PMC7319446
- DOI: 10.1093/nar/gkaa309
miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems
Abstract
Gene set enrichment analysis has become one of the most frequently used applications in molecular biology research. Originally developed for gene sets, the same statistical principles are now available for all omics types. In 2016, we published the miRNA enrichment analysis and annotation tool (miEAA) for human precursor and mature miRNAs. Here, we present miEAA 2.0, supporting miRNA input from ten frequently investigated organisms. To facilitate inclusion of miEAA in workflow systems, we implemented an Application Programming Interface (API). Users can perform miRNA set enrichment analysis using either the web-interface, a dedicated Python package, or custom remote clients. Moreover, the number of category sets was raised by an order of magnitude. We implemented novel categories like annotation confidence level or localisation in biological compartments. In combination with the miRBase miRNA-version and miRNA-to-precursor converters, miEAA supports research settings where older releases of miRBase are in use. The web server also offers novel comprehensive visualizations such as heatmaps and running sum curves with background distributions. We demonstrate the new features with case studies for human kidney cancer, a biomarker study on Parkinson's disease from the PPMI cohort, and a mouse model for breast cancer. The tool is freely accessible at: https://www.ccb.uni-saarland.de/mieaa2.
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures


Similar articles
-
miEAA: microRNA enrichment analysis and annotation.Nucleic Acids Res. 2016 Jul 8;44(W1):W110-6. doi: 10.1093/nar/gkw345. Epub 2016 Apr 29. Nucleic Acids Res. 2016. PMID: 27131362 Free PMC article.
-
miEAA 2023: updates, new functional microRNA sets and improved enrichment visualizations.Nucleic Acids Res. 2023 Jul 5;51(W1):W319-W325. doi: 10.1093/nar/gkad392. Nucleic Acids Res. 2023. PMID: 37177999 Free PMC article.
-
miRTargetLink 2.0-interactive miRNA target gene and target pathway networks.Nucleic Acids Res. 2021 Jul 2;49(W1):W409-W416. doi: 10.1093/nar/gkab297. Nucleic Acids Res. 2021. PMID: 34009375 Free PMC article.
-
DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows.Nucleic Acids Res. 2013 Jul;41(Web Server issue):W169-73. doi: 10.1093/nar/gkt393. Epub 2013 May 16. Nucleic Acids Res. 2013. PMID: 23680784 Free PMC article.
-
MicroRNAs and their target gene networks in renal cell carcinoma.Biochem Biophys Res Commun. 2011 Feb 11;405(2):153-6. doi: 10.1016/j.bbrc.2011.01.019. Epub 2011 Jan 11. Biochem Biophys Res Commun. 2011. PMID: 21232526 Review.
Cited by
-
A Group of Highly Secretory miRNAs Correlates with Lymph Node Metastasis and Poor Prognosis in Oral Squamous Cell Carcinoma.Biomolecules. 2024 Feb 15;14(2):224. doi: 10.3390/biom14020224. Biomolecules. 2024. PMID: 38397460 Free PMC article.
-
3D genome-selected microRNAs to improve Alzheimer's disease prediction.Front Neurol. 2023 Feb 13;14:1059492. doi: 10.3389/fneur.2023.1059492. eCollection 2023. Front Neurol. 2023. PMID: 36860572 Free PMC article.
-
Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis.JCI Insight. 2022 Apr 8;7(7):e156669. doi: 10.1172/jci.insight.156669. JCI Insight. 2022. PMID: 35202004 Free PMC article.
-
Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles.Front Oncol. 2023 Aug 10;13:1230273. doi: 10.3389/fonc.2023.1230273. eCollection 2023. Front Oncol. 2023. PMID: 37637043 Free PMC article. Review.
-
Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure.medRxiv [Preprint]. 2023 Aug 4:2023.08.02.23293567. doi: 10.1101/2023.08.02.23293567. medRxiv. 2023. PMID: 37577697 Free PMC article. Preprint.
References
-
- Kern F., Backes C., Hirsch P., Fehlmann T., Hart M., Meese E., Keller A.. What’s the target: understanding two decades of in silico microRNA-target prediction. Brief. Bioinform. 2019; doi:10.1093/bib/bbz111. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources