Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 20;142(20):9181-9187.
doi: 10.1021/jacs.0c03881. Epub 2020 May 11.

Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery

Affiliations

Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery

Jeroen B I Sap et al. J Am Chem Soc. .

Abstract

Molecular editing such as insertion, deletion, and single atom exchange in highly functionalized compounds is an aspirational goal for all chemists. Here, we disclose a photoredox protocol for the replacement of a single fluorine atom with hydrogen in electron-deficient trifluoromethylarenes including complex drug molecules. A robustness screening experiment shows that this reductive defluorination tolerates a range of functional groups and heterocycles commonly found in bioactive molecules. Preliminary studies allude to a catalytic cycle whereby the excited state of the organophotocatalyst is reductively quenched by the hydrogen atom donor, and returned in its original oxidation state by the trifluoromethylarene.

PubMed Disclaimer

Conflict of interest statement

The authors declare the following competing financial interest(s): T.K. and C.W.A. are employees of Pfizer Inc.; C.F.M. and A.A.T. are employees of Janssen; C.G. is an employee of UCB Biopharma Sprl.

Figures

Scheme 1
Scheme 1. Hydrodefluorination of Trifluoromethylarenes in Drug Discovery
Scheme 2
Scheme 2. Electrochemical Reductive Cleavage of Trifluoromethylarenes: Standard Reduction Potentials (V vs Standard Calomel Electrode (SCE) in DMF) and Cleavage Rate Constants
E1/2 (V vs SCE in DMF).
Scheme 3
Scheme 3. Scope of HDF
Yields and CF2H/CH2F ratio determined by quantitative 19F NMR spectroscopy using 4-fluoroanisole as internal standard. Yields of isolated products (RCF2H only) are given in parentheses. 2.5 mol % 4-DPA-IPN. Solvent is DCE/DMSO (19:1, v/v, c = 0.025 M).
Scheme 4
Scheme 4. Additive-Based Screening
All reactions were performed on 2.5 μmol scale in a 96-well plate suited for photoredox chemistry. Crude mixtures were analyzed by GC-FID/MS.
Scheme 5
Scheme 5. Photoredox Hydrodefluorination under Continuous-Flow Conditions
Yields of isolated products.
Scheme 6
Scheme 6. (A) Mechanistic Experiments; (B) Stern–Volmer Luminescence Quenching Studies; (C) Proposed Reaction Mechanism
Yields determined by quantitative 19F NMR using 4-fluoroanisole as internal standard.

References

    1. Müller K.; Faeh C.; Diederich F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886. 10.1126/science.1131943. - DOI - PubMed
    2. Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. 10.1039/B610213C. - DOI - PubMed
    3. Meanwell N. A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880. 10.1021/acs.jmedchem.7b01788. - DOI - PubMed
    4. Wang J.; Sánchez-Roselló M.; Aceña J. L.; del Pozo C.; Sorochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. 10.1021/cr4002879. - DOI - PubMed
    5. Clayden J. Fluorinated compounds present opportunities for drug discovery. Nature 2019, 573, 37–38. 10.1038/d41586-019-02611-7. - DOI - PubMed
    1. Sessler C. D.; Rahm M.; Becker S.; Goldberg J. M.; Wang F.; Lippard S. J. CF2H, a Hydrogen Bond Donor. J. Am. Chem. Soc. 2017, 139, 9325–9332. 10.1021/jacs.7b04457. - DOI - PMC - PubMed
    2. Yerien D. E.; Barata-Vallejo S.; Postigo A. Difluoromethylation reactions of organic compounds. Chem. - Eur. J. 2017, 23, 14676–14701. 10.1002/chem.201702311. - DOI - PubMed
    3. Rong J.; Ni C.; Hu J. Metal-Catalyzed Direct Difluoromethylation Reactions. Asian J. Org. Chem. 2017, 6, 139–152. 10.1002/ajoc.201600509. - DOI
    4. Lu Y.; Liu C.; Chen Q.-Y. Recent Advances in Difluoromethylation Reaction. Curr. Org. Chem. 2015, 19, 1638–1650. 10.2174/1385272819666150615235605. - DOI
    1. For seminal examples on C(sp3)–F and C(sp2)–F functionalization, see:

    2. Senaweera S. M.; Weaver J. D. Selective Perfluoro- and Polyfluoroarylation of Meldrum’s Acid. J. Org. Chem. 2014, 79, 10466–10476. 10.1021/jo502075p. - DOI - PubMed
    3. Khaled M. B.; El Mokadem R. K.; Weaver J. D. III Hydrogen bond directed photocatalytic hydrodefluorination: overcoming electronic control. J. Am. Chem. Soc. 2017, 139, 13092–13101. 10.1021/jacs.7b06847. - DOI - PMC - PubMed
    4. Xu L.; Zhang Q.; Xie Q.; Huang B.; Dai J. J.; Xu J.; Xu H. J. Pd-catalyzed defluorination/arylation of α-trifluoromethyl ketones via consecutive β-F elimination and C-F bond activation. Chem. Commun. 2018, 54, 4406–4409. 10.1039/C8CC01568F. - DOI - PubMed
    5. Nishimine T.; Taira H.; Tokunaga E.; Shiro M.; Shibata N. Enantioselective Trichloromethylation of MBH-Fluorides with Chloroform Based on Silicon-assisted C-F Activation and Carbanion Exchange Induced by a Ruppert-Prakash Reagent. Angew. Chem., Int. Ed. 2016, 55, 359–363. 10.1002/anie.201508574. - DOI - PubMed
    6. Pigeon X.; Bergeron M.; Barabé F.; Dubé P.; Frost H. N.; Paquin J. F. Activation of Allylic C-F bonds: Palladium-Catalyzed Allylic Amination of 3,3-Difluoropropenes. Angew. Chem., Int. Ed. 2010, 49, 1123–1127. 10.1002/anie.200904747. - DOI - PubMed
    7. Hamel J. D.; Paquin J. F. Activation of C-F bonds α to C-C multiple bonds. Chem. Commun. 2018, 54, 10224–10239. 10.1039/C8CC05108A. - DOI - PubMed
    8. Paquin J. F. Synthesis of Monofluoroalkenes via the Activation of Allylic C-F Bonds: A Novel Route to β-Aminofluoroalkenes Using Pd-Catalyzed Allylic Amination Reactions of 3,3-Difluoropropenes. Synlett 2011, 2011, 289–293. 10.1055/s-0030-1259333. - DOI
    9. Haufe G.; Suzuki S.; Yasui H.; Terada C.; Kitayama T.; Shiro M.; Shibata N. C-F Bond Activation of Unactivated Aliphatic Fluorides: Synthesis of Fluoromethyl-3,5-diaryl-2-oxazolidinones by Desymmetrization of 2-Aryl-1,3-difluoropropan-2-ols. Angew. Chem., Int. Ed. 2012, 51, 12275–12279. 10.1002/anie.201207304. - DOI - PubMed
    10. Hazari A.; Gouverneur V.; Brown J. M. Palladium-Catalyzed Substitution of Allylic Fluorides. Angew. Chem., Int. Ed. 2009, 48, 1296–1299. 10.1002/anie.200804310. - DOI - PubMed
    11. Blessley G.; Holden P.; Walker M.; Brown J. M.; Gouverneur V. Palladium-Catalyzed Substitution and Cross-Coupling of Benzylic Fluorides. Org. Lett. 2012, 14, 2754–2757. 10.1021/ol300977f. - DOI - PubMed
    12. For selected reviews on C–F bond activation, see:

    13. Amii H.; Uneyama K. C-F bond activation in organic synthesis. Chem. Rev. 2009, 109, 2119–2183. 10.1021/cr800388c. - DOI - PubMed
    14. Ahrens T.; Kohlmann J.; Ahrens M.; Braun T. Functionalization of Fluorinated Molecules by Transition-Metal-Mediated C-F Bond Activation to Access Fluorinated Building Blocks. Chem. Rev. 2015, 115, 931–972. 10.1021/cr500257c. - DOI - PubMed
    15. Senaweera S. M.; Singh A.; Weaver J. D. Photocatalytic Hydrodefluorination: Facile Access to Partially Fluorinated Aromatics. J. Am. Chem. Soc. 2014, 136, 3002–3005. 10.1021/ja500031m. - DOI - PubMed
    1. Andrieux C. P.; Combellas C.; Kanoufi F.; Savéant J.; Thiébault A. Dynamics of Bond Breaking in Ion Radicals. Mechanisms and Reactivity in the Reductive Cleavage of Carbon-Fluorine Bonds of Fluoromethylarenes. J. Am. Chem. Soc. 1997, 119, 9527–9540. 10.1021/ja971094o. - DOI
    2. Clavel P.; Lessene G.; Biran C.; Bordeau M.; Roques N.; Trévin S.; Montauzon D. D. Selective electrochemical synthesis and reactivity of functional benzylic fluorosilylsynthons. J. Fluorine Chem. 2001, 107, 301–310. 10.1016/S0022-1139(00)00373-0. - DOI
    1. Ferraris D.; Cox C.; Anand R.; Lectka T. C-F Bond Activation by Aryl Carbocations: Conclusive Intramolecular Fluoride Shifts between Carbon Atoms in Solution and the First Examples of Intermolecular Fluoride Ion Abstractions. J. Am. Chem. Soc. 1997, 119, 4319–4320. 10.1021/ja963090+. - DOI
    2. Yoshida S.; Shimomori K.; Kim Y.; Hosoya T. Single C-F Bond Cleavage of Trifluoromethylarenes with an ortho-Silyl Group. Angew. Chem., Int. Ed. 2016, 55, 10406–10409. 10.1002/anie.201604776. - DOI - PubMed
    3. Mallov I.; Ruddy A. J.; Zhu H.; Grimme S.; Stephan D. W. C-F Bond Activation by Silylium Cation/Phosphine Frustrated Lewis Pairs: Mono-Hydrodefluorination of PhCF3, PhCF2H and Ph2CF2. Chem. - Eur. J. 2017, 23, 17692–17696. 10.1002/chem.201705276. - DOI - PubMed
    4. Mandal D.; Gupta R.; Jaiswal A. K.; Young R. D. Frustrated Lewis-Pair-Meditated Selective Single Fluoride Substitution in Trifluoromethyl Groups. J. Am. Chem. Soc. 2020, 142, 2572–2578. 10.1021/jacs.9b12167. - DOI - PubMed

Publication types

Substances