Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 7;17(1):15.
doi: 10.1186/s12989-020-00346-2.

Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes

Affiliations

Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes

Omar Lozano et al. Part Fibre Toxicol. .

Abstract

Background: Silica nanoparticles (nanoSiO2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO2.

Results: The cumulative administration of nanoSiO2 reduced the mechanical performance index of the rat heart with a half-maximal inhibitory concentration (IC50) of 93 μg/mL, affecting the relaxation rate. In isolated mitochondria nanoSiO2 was found to be internalized, inhibiting oxidative phosphorylation and significantly reducing the mitochondrial membrane potential (ΔΨm). The mitochondrial permeability transition pore (mPTP) was also induced with an increasing dose of nanoSiO2 and partially recovered with, a potent blocker of the mPTP, Cyclosporine A (CsA). The activity of aconitase and thiol oxidation, in the adenine nucleotide translocase, were found to be reduced due to nanoSiO2 exposure, suggesting that nanoSiO2 induces the mPTP via thiol modification and ROS generation. In cardiac cells exposed to nanoSiO2, enhanced viability and reduction of H2O2 were observed after application of a specific mitochondrial antioxidant, MitoTEMPO. Concomitantly, CsA treatment in adult rat cardiac cells reduced the nanoSiO2-triggered cell death and recovered ATP production (from 32.4 to 65.4%). Additionally, we performed evaluation of the mitochondrial effect of nanoSiO2 in human cardiomyocytes. We observed a 40% inhibition of maximal oxygen consumption rate in mitochondria at 500 μg/mL. Under this condition we identified a remarkable diminution in the spare respiratory capacity. This data indicates that a reduction in the amount of extra ATP that can be produced by mitochondria during a sudden increase in energy demand. In human cardiomyocytes, increased LDH release and necrosis were found at increased doses of nanoSiO2, reaching 85 and 48%, respectively. Such deleterious effects were partially prevented by the application of CsA. Therefore, exposure to nanoSiO2 affects cardiac function via mitochondrial dysfunction through the opening of the mPTP.

Conclusion: The aforementioned effects can be partially avoided reducing ROS or retarding the opening of the mPTP. These novel strategies which resulted in cardioprotection could be considered as potential therapies to decrease the side effects of nanoSiO2 exposure.

Keywords: Calcium overload; Cardiotoxicity; Heart; Mitochondria; Oxidative stress; Permeability transition; Silica nanoparticles.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
nanoSiO2 accumulates in heart tissue, diminishing contractility and affecting predominantly LVP and HR. a Silicon quantification in myocardial tissue by SEM-EDS after 100 μg/mL nanoSiO2 perfusion in ex-vivo heart. b, c Heart rate pressure product (RPP = HR × LVP) during 60 min after time- and dose- dependent nanoSiO2 administration. d The RRP dependence on nanoSiO2 administration reduced the frequency, and in some cases the amplitude of LVP and dP/dt, in addition a reduced HR. Values are percentage of control and represent mean ± SEM, n = 4
Fig. 2
Fig. 2
Exposure to nanoSiO2 to rat and human cardiac mitochondria results in mitochondrial dysfunction, observed by a reduced oxygen consumption rate and mitochondrial membrane potential. For rat cardiomyocyte mitochondria (a-d), at incremental nanoSiO2 concentrations: a Representative recordings of OCR. Addition of succinate and ADP are denoted by arrows. b Decrease of OCR evaluated in state 4 and state 3. c Representative recordings of ΔΨm. Addition of succinate and ADP are denoted by arrows. d Decrease of ΔΨm. For human cardiomyocyte mitochondria, at incremental nanoSiO2 concentrations: e Representative recordings of OCR. Addition of oligomycin, FCCP, rotenone and Antimycin A are denoted by dashed lines. f Basal and maximum OCR, and spare reserve. The exposure of mitochondria to nanoSiO2 was 5 min prior to measurements. Values represent mean ± SEM
Fig. 3
Fig. 3
nanoSiO2 promotes mitochondrial membrane permeability associated to mPTP opening. a-b Representative recordings of mitochondrial CRC at increasing concentrations: (a) as a function of nanoSiO2, and (b) as a function of CsA. Arrows represent 10 μM Ca2+ bolus addition. c-d Semiquantitative analysis of CRC: (c) as a function of nanoSiO2, and (d) as a function of CsA. e-f Representative recordings of: (e) mitochondrial depolarization, and (f) swelling in presence and absence of CsA. The exposure of mitochondria to nanoSiO2 was 5 min prior to measurements. The concentration of nanoSiO2 in (b,d-f) was 100 μg/mL. CsA was applied at the same time of nanoSiO2 administration. Values are percentage of control and represent mean ± SEM
Fig. 4
Fig. 4
nanoSiO2 disturbs mitochondrial enzymatic activity and promote the oxidation of mitochondrial proteins. MitoTEMPO, a mitochondrial antioxidant, partially prevents nanoSiO2 oxidation effects. a Representative recordings of mitochondrial calcium transport in nanoSiO2 (30 μg/mL) incubated in mitochondria after the addition of 10 μM Ca2+. MitoTEMPO improved mitochondrial calcium transport. b Aconitase enzyme activity, c free thiol content, and d mitochondrial thiols in the ANT interlinked by n-ethylmaleimide (NEM) binding in isolated heart mitochondria after nanoSiO2 treatment (30 μg/mL) in presence or absence of MitoTEMPO (25 μM). The exposure of mitochondria to nanoSiO2 was 5 min prior to measurements. MitoTEMPO was applied 30 min prior to nanoSiO2 administration. Values are percentage of control and represent mean ± SEM. *p ≤ 0.05 vs control, #p ≤ 0.05 vs SNP. e Schematic interaction of NEM with SH groups in proteins
Fig. 5
Fig. 5
The toxicity mechanism of nanoSiO2 in cardiac cells is driven by reactive oxygen species and the opening of the mPTP. a MitoTEMPO dose-dependent cellular death prevention with 200 μg/mL of nanoSiO2 administration in H9c2 cells. b H2O2 production after nanoSiO2 administration (200 μg/mL) in presence or absence of MitoTEMPO (100 μM) in H9c2 cells. c Cellular viability in ventricular myocytes after nanoSiO2 administration in the absence or presence of CsA (0.5 μM). d ATP production in cardiomyocytes after nanoSiO2 administration (100 μg/mL) in absence or presence of CsA (0.5 μM). For human cardiomyocytes: (e) LDH release activity, (f) PI positive cells. MitoTEMPO or CsA were applied 30 min prior to nanoSiO2 administration. nanoSiO2 was incubated during 24 h. Values are percentage of control and represent mean ± SEM. *p ≤ 0.05 vs control, #p ≤ 0.05 vs CsA
Fig. 6
Fig. 6
nanoSiO2 induces an increase in mitochondrial ROS production, leading to dysfunction in cardiac contractility. Hearts perfused with nanoSiO2 showed a compromised contractility, finding nanoSiO2 accumulation (heart representation, left side). Once nanoSiO2 internalizes into mitochondria, production of ROS is increased, compromising mitochondrial function. This leads to several oxidative damages, reducing the activity of the aconitase, and affecting the activity of key mitochondrial proteins such ANT through the oxidation of thiol groups. ANT oxidation promotes the mPTP formation, causing a decrease in mitochondrial membrane potential, which is the electrochemical force to synthetize ATP, compromising cellular viability. MitoTempo, a mitochondrial antioxidant agent, or CsA through delaying the formation of the mPTP, partially prevented these adverse effects of nanoSiO2 exposure

Similar articles

Cited by

References

    1. AB, S. T . TAR Study Investigating Performance and Safety of the Medical Device SiPore15™ [Clinical trial]. Reviewed online from U. S. National Library of Medicine Web page. 2019.
    1. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology. 2010;276(2):95–102. doi: 10.1016/j.tox.2010.07.010. - DOI - PubMed
    1. Al Samri MT, Biradar AV, Alsuwaidi AR, Balhaj G, Al-Hammadi S, Shehab S, Al-Salam S, Tariq S, Pramathan T, Benedict S, Asefa T, Souid A-K. In vitro biocompatibility of calcined mesoporous silica particles and fetal blood cells. Int J Nanomedicine. 2012;7:3111–3121. - PMC - PubMed
    1. Aziz Q, Finlay M, Montaigne D, Ojake L, Li Y, Anderson N, Ludwig A, Tinker A. ATP-sensitive potassium channels in the sinoatrial node contribute to heart rate control and adaptation to hypoxia. J Biol Chem. 2018;293(23):8912–8921. doi: 10.1074/jbc.RA118.002775. - DOI - PMC - PubMed
    1. Bye E, Davies R, Griffiths DM, Gylseth B, Moncrieff CB. In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products. Br J Ind Med. 1984;41(2):228–234. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources