Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 2;54(11):7008-7018.
doi: 10.1021/acs.est.0c02526. Epub 2020 May 20.

Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning

Affiliations

Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning

Kai Zhang et al. Environ Sci Technol. .

Abstract

Predictive models are useful tools for aqueous adsorption research; existing models such as multilinear regression (MLR), however, can only predict adsorption under specific equilibrium concentrations or for certain adsorption isotherm models. Also, few studies have discussed data processing beyond applying different modeling algorithms to improve the prediction accuracy. In this research, we employed a cosine similarity approach that focused on mining the available data before developing models; this approach can mine the most relevant data concerning the prediction target to build models and was found to considerably improve the prediction accuracy. We then built a machine-learning modeling process based on neural networks (NN), a group-selection data-splitting strategy for grouped adsorption data for adsorbent-adsorbate pairs under different equilibrium concentrations, and polyparameter linear free energy relationships (pp-LFERs) for aqueous adsorption of 165 organic compounds onto 50 biochars, 34 carbon nanotubes, 35 GACs, and 30 polymeric resins. The final NN-LFER models were successfully applied to various equilibrium concentrations regardless of the adsorption isotherm models and showed less prediction deviations than the published models with the root-mean-square errors 0.23-0.31 versus 0.23-0.97 log unit, and the predictions were improved by adding two key descriptors (BET surface area and pore volume) for the adsorbents. Finally, interpreting the NN-LFER models based on the Shapley values suggested that not considering equilibrium concentration and properties of the adsorbents in the existing MLR models is a possible reason for their higher prediction deviations.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources