Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages
- PMID: 32385815
- DOI: 10.1007/s11356-020-08978-9
Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages
Abstract
Phytoremediation is considered one of the well-established and sustainable techniques for the removal of heavy metals and metalloids from contaminated sites. The metal extraction ability of the plants can be enhanced by using suitable organic materials in combination with metal-tolerant plants. This experiment was carried out to investigate the phytoextraction potential of Mentha piperita L. for nickel (Ni) with and without citric acid (CA) amendment in hydroponic experiment. The experiment was performed in controlled glass containers with continuous aeration in complete randomized design (CRD). Juvenile M. piperita plants were treated with different concentrations of Ni (100, 250, and 500 μM) alone and/or combined with CA (5 mM). After harvesting the plants, the morpho-physiological and biochemical attributes as well as Ni concentrations in different tissues of M. piperita plants were measured. Results revealed that Ni stress significantly decreased the plant agronomic traits, photosynthesis in comparison to control. Nickel stress enhanced the antioxidant enzymes activities and caused the production of reactive oxygen species (ROS) in M. piperita. The CA treatment under Ni stress significantly improved the plant morpho-physiological and biochemical characteristics when compared with Ni treatments alone. The results demonstrated that CA enhanced the Ni concentrations in roots, stems, and leaves up to 138.2%, 54.2%, and 38%, respectively, compared to Ni-only-treated plants. The improvement in plant growth with CA under Ni stress indicated that CA is beneficial for Ni phytoextraction by using tolerant plant species. Graphical abstract.
Keywords: Accumulation; Antioxidant enzymes; Citric acid; Mentha piperita; Nickel; Phytoremediation.
References
-
- Abd_Allah EF, Hashem A, Alam P, Ahmad P (2019) Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. J Plant Growth Regul 38:1260–1273. https://doi.org/10.1007/s00344-019-09931-y - DOI
-
- Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 - DOI
-
- Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689. https://doi.org/10.1007/s11356-015-4396-8 - DOI
-
- Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P (2020) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant 168:289–300. https://doi.org/10.1111/ppl.13001 - DOI
-
- Al Mahmud J, Bhuyan MHMB, Anee TI et al (2019) Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Plant Abiotic Stress Tolerance. Springer International Publishing, pp 221–257
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources