Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 27;59(31):12853-12859.
doi: 10.1002/anie.202003271. Epub 2020 Jun 5.

Distal γ-C(sp3 )-H Olefination of Ketone Derivatives and Free Carboxylic Acids

Affiliations

Distal γ-C(sp3 )-H Olefination of Ketone Derivatives and Free Carboxylic Acids

Han Seul Park et al. Angew Chem Int Ed Engl. .

Abstract

Reported herein is the distal γ-C(sp3 )-H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino-acid directing group and using the ligand combination of a mono-N-protected amino acid (MPAA) and an electron-deficient 2-pyridone were critical for the γ-C(sp3 )-H olefination of ketone substrates. In addition, MPAAs enabled the γ-C(sp3 )-H olefination of free carboxylic acids to form diverse six-membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3 )-H bonds also could be functionalized to form 3,4-dihydroisocoumarin structures in a single step from 2-methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ-C(sp3 )-H olefinated products.

Keywords: C(sp3)−H activation; amino acids; olefins; palladium; synthetic methods.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

The authors declare no conflict of interest.

Figures

Scheme 1.
Scheme 1.
Pd(II)-Catalyzed C(sp3)–H Activation of Ketones and Free Carboxylic Acids
Scheme 2.
Scheme 2.
Competition Experiment, conditions: 1a (0.05 mmol), 1a’ (0.05 mmol), Pd(OAc)2 (10 mol%, 0.01 mmol), L5 (20 mol%, 0.02 mmol), L14 (20 mol%, 0.02 mmol), ethyl acrylate (3.0 equiv, 0.3 mmol), AgOAc (2.0 equiv, 0.2 mmol), Ag2CO3 (1.0 equiv, 0.1 mmol), HFIP (1 mL), 120 °C, 6 h, Combined yield of mono/di products determined by 1H NMR analysis of the crude mixture using CH2Br2 as the internal standard. Yields were calculated based on the initial amount of substrates.
Scheme 3.
Scheme 3.
Synthetic Applications: a) 1a (2.0 mmol, 1.0 equiv), ethyl acrylate (3.0 equiv), Pd(OAc)2 (10 mol%), L5 (20 mol%), L14 (20 mol%), AgOAc (2.0 equiv), Ag2CO3 (1.0 equiv), HFIP (20.0 mL), 120 °C, oxygen atmosphere, 40 h. b) 4a (2.0 mmol, 1.0 equiv), benzyl acrylate (2.0 equiv), Pd(OAc)2 (10 mol%), L2 (10 mol%), Na2HPO4•7H2O (1.0 equiv), Ag2CO3 (2.0 equiv), HFIP (20.0 mL), 120 °C, under air, 24 h. c) H2, Pd/C, MeOH, RT, 15 h. d) NaBH4 (1.0 equiv), THF, 0 °C, 4 h. e) LiHMDS (1.0 equiv), THF, −78 °C, 3 h, f) LiHMDS (1.2 equiv), THF, −78 °C, 3 h. g) LiAlH4 (4.0 equiv), THF, 0 °C to RT, 10 h. h) 6 M HCl (aq.), 80 °C, 12 h.

References

    1. Gandeepan P, Parthasarathy K, Cheng C-H, J. Am. Chem. Soc 2010, 132, 8569; - PubMed
    2. Xiao B, Gong T-J, Xu J, Liu Z-J, Liu L, J. Am. Chem. Soc 2011, 133, 1466; - PubMed
    3. Li G, Wan L, Zhang G, Leow D, Spangler J, Yu J-Q, J. Am. Chem. Soc 2015, 137, 4391. - PMC - PubMed
    1. Baldwin JE, Jones RH, Nájera C, Yus M, Tetrahedron 1985, 41, 699;
    2. Constable AG, McDonald WS, Sawkins LC, Shaw BL, J. Chem. Soc., Chem. Commun 1978, 1061;
    3. Carr K, Sutherland JK, J. Chem. Soc., Chem. Commun 1984, 1227;
    4. Baldwin JE, Nájera C, Yus M, J. Chem. Soc., Chem. Commun 1985, 126.
    1. Desai LV, Hull KL, Sanford MS, J. Am. Chem. Soc 2004, 126, 9542; - PubMed
    2. Thu H-Y, Yu W-Y, Che C-M, J. Am. Chem. Soc 2006, 128, 9048; - PubMed
    3. Kang T, Kim Y, Lee D, Wang Z, Chang S, J. Am. Chem. Soc 2014, 136, 4141; - PubMed
    4. Gao P, Guo W, Xue J, Zhao Y, Yuan Y, Xia Y, Shi Z, J. Am. Chem. Soc 2015, 137, 12231; - PubMed
    5. Mu Y, Tan X, Zhang Y, Jing X, Shi Z, Org. Chem. Front 2016, 3, 380.
    1. Zhang F-L, Hong K, Li T-J, Park H, Yu J-Q, Science 2016, 351, 252; - PMC - PubMed
    2. Hong K, Park H, Yu J-Q, ACS Catal. 2017, 7, 6938; - PMC - PubMed
    3. Park H, Verma P, Hong K, Yu J-Q, Nat. Chem. 2018, 10, 755; - PMC - PubMed
    4. Yang K, Li Q, Liu Y, Li G, Ge H, J. Am. Chem. Soc 2016, 138, 12775; - PubMed
    5. Li B, Lawrence B, Li G, Ge H, Angew. Chem. Int. Ed 2020, 59, 3078; Angew. Chem. 2020, 132, 3102; - PubMed
    6. Dong C, Wu L, Yao J, Wei K, Org. Lett 2019, 21, 2085; - PubMed
    7. Wen F, Li Z, Adv. Synth. Catal 2019, 362, 133;
    8. St John-Campbell S, White AJP, Bull JA, Org. Lett 2020, 10.1021/acs.orglett.0c00124. - DOI - PubMed
    1. Zhu R-Y, Liu L-Y, Yu J-Q, J. Am. Chem. Soc 2017, 139, 12394; - PMC - PubMed
    2. Zhu R-Y, Liu L-Y, Park HS, Hong K, Wu Y, Senanayake CH, Yu J-Q, J. Am. Chem. Soc 2017, 139, 16080; - PMC - PubMed
    3. Zhu R-Y, Li Z-Q, Park HS, Senanayake CH, Yu J-Q, J. Am. Chem. Soc. 2018, 140, 3564. - PMC - PubMed

Publication types

LinkOut - more resources