Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 15:237:118416.
doi: 10.1016/j.saa.2020.118416. Epub 2020 Apr 27.

Indirect solvent assisted tautomerism in 4-substituted phthalimide 2-hydroxy-Schiff bases

Affiliations

Indirect solvent assisted tautomerism in 4-substituted phthalimide 2-hydroxy-Schiff bases

Dancho Yordanov et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

The paper presents the synthesis and characterization of two 4-substituted phthalimide 2-hydroxy-Schiff bases containing salicylic (4) and 2-hydroxy-1-naphthyl (5) moieties. The structural differences of 2-hydroxyaryl substituents, resulting in different enol/keto tautomeric behaviour, depending on the solvent environment were studied by absorption UV-Vis spectroscopy. Compound 5 is characterized by a solvent-dependent tautomeric equilibrium (KT in toluene = 0.12, acetonitrile = 0.22 and MeOH = 0.63) while no tautomerism is observed in 4. Ground state theoretical DFT calculations by using continuum solvation in MeOH indicate an energy barrier between enol/keto tautomer 5.6 kcal mol-1 of 4 and 0.63 kcal mol-1 of 5, which confirms the experimentally observed impossibility of the tautomeric equilibrium in the former. The experimentally observed specific solvent effect in methanol is modeled via explicit solvation. The excited state intramolecular proton transfer (ESIPT) was investigated by steady state fluorescence spectroscopy. Both compounds show a high rate of photoconversion to keto tautomers hence keto emissions with large Stokes shifts in five alcohols (MeOH, EtOH, 1-propanol, 1-butanol, and 1-pentanol) and various aprotic solvents (toluene, dichlormethane, acetone, AcCN). According to the excited state TDDFT calculations using implicit solvation in MeOH, it was found that enol tautomers of 4 and 5 are higher in energy compared to the keto ones, which explains the origin of the experimentally observed keto form emission.

Keywords: 2-hydroxy-Schiff bases; Crystallography; DFT; ESIPT; Enol/keto tautomerism; Phototautomerization; Phthalimides; UV–Vis spectroscopy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources