Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 11;15(5):e0232851.
doi: 10.1371/journal.pone.0232851. eCollection 2020.

Concept of an artificial muscle design on polypyrrole nanofiber scaffolds

Affiliations

Concept of an artificial muscle design on polypyrrole nanofiber scaffolds

Madis Harjo et al. PLoS One. .

Abstract

Here we present the synthesis and characterization of two new conducting materials having a high electro-chemo-mechanical activity for possible applications as artificial muscles or soft smart actuators in biomimetic structures. Glucose-gelatin nanofiber scaffolds (CFS) were coated with polypyrrole (PPy) first by chemical polymerization followed by electrochemical polymerization doped with dodecylbenzensulfonate (DBS-) forming CFS-PPy/DBS films, or with trifluoromethanesulfonate (CF3SO3-, TF) giving CFS-PPy/TF films. The composition, electronic and ionic conductivity of the materials were determined using different techniques. The electro-chemo-mechanical characterization of the films was carried out by cyclic voltammetry and square wave potential steps in bis(trifluoromethane)sulfonimide lithium solutions of propylene carbonate (LiTFSI-PC). Linear actuation of the CFS-PPy/DBS material exhibited 20% of strain variation with a stress of 0.14 MPa, rather similar to skeletal muscles. After 1000 cycles, the creeping effect was as low as 0,2% having a good long-term stability showing a strain variation per cycle of -1.8% (after 1000 cycles). Those material properties are excellent for future technological applications as artificial muscles, batteries, smart membranes, and so on.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
a: Chronopotentiometric response during the galvanostatic electropolymerization of the CFS-PPy/DBS (black line) and CFS-PPy/TF (red line) scaffold materials. The SEM surface images (scale bar 5 μm); each inset shows the cross section of a single fiber (scale bar 1 μm): b, CFS-PPy/DBS, and c, CFS-PPy/TF.
Fig 2
Fig 2
a: FTIR spectra of CFS-PPy/DBS (black line), CFS-PPy/TF (red line) and CFS samples (blue line) in wavelength range of 2000 to 800 cm-1. EDX spectra of oxidized (5min, 1V, black line) and reduced (5 min at -0.55 V, red line) in b: CFS-PPy/DBS and c: CFS-PPy/TF.
Fig 3
Fig 3
Cyclic voltammetry (scan rate 5 mV s-1) of CFS-PPy/DBS (black line) and CFS-PPy/TF (red line) in LiTFSI-PC (potential range 1 V to -0.55 V against Ag/AgCl (3 M KCl) reference electrode, 4th cycle) showing in a: strain ε; b: stress σ, c: current density j and d: charge density Q against potential E. The arrows indicate the direction of scan.
Fig 4
Fig 4
Square wave potential measurements in potential range 1 V to -0.55 V in LiTFSI-PC electrolyte showing in a: the strain ε (2nd-3th cycles) of CFS-PPy/DBS (black line) and CFS-PPy/TF (red line) with potential E (dashed) against time t (frequency, 0.0025 Hz). At frequencies 0.0025 Hz to 0.1 Hz, the maximum strain of CFS-PPy/DBS (black, ■) and CFS-PPy/TF (red, ) against logarithmic scale of frequency are shown in (b). The obtained charge densities Q from each chronopotentiogram shown in c: strain ε against the charge density Q. The dashed lines in c represent linear fits and are shown just as visual guides.
Fig 5
Fig 5. CFS-PPy/DBS (■) and CFS-PPy/TF () showing in a: Diffusion coefficients Dox (upon oxidation) obtained from Eqs 2 and 3 against the applied frequency f and b: the strain rate νox against diffusion coefficients Dox.
The dashed lines represent the linear fit and shown for orientations.
Fig 6
Fig 6. Stability test: Square wave potential steps at frequency 0.1 Hz (1000 cycles) in potential range 1 V to -0.55 V in LiTFSI-PC showing in a: the strain ε of CFS-PPy/DBS (black) and CFS-PPy/TF (red) against time t and in b: the strain ε (main values with standard deviation) of CFS-PPy/DBS (■) and CFS-PPy/TF () against cycle number.

Similar articles

Cited by

References

    1. Baughman RH. Conducting polymer artificial muscles. Synth Met. 1996;78: 339–353. 10.1016/0379-6779(96)80158-5 - DOI
    1. Melling D, Martinez JG, Jager EWH. Conjugated Polymer Actuators and Devices: Progress and Opportunities. Adv Mater. 2019;31: 1808210. - PubMed
    1. Hara S, Zama T, Takashima W, Kaneto K. TFSI-doped polypyrrole actuator with 26% strain. J Mater Chem. 2004;14: 1516 10.1039/b404232h - DOI
    1. Hara S, Zama T, Tanaka N, Takashima W, Kaneto K. Artificial fibular muscles with 20% strain based on polypyrrole-metal coil composites. Chem Lett. 2005;34: 784–785. 10.1246/cl.2005.784 - DOI
    1. Aziz S, Spinks GM. Torsional artificial muscles. Mater Horizons. 2020; accepted. 10.1039/c9mh01441a - DOI

Publication types

MeSH terms