Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021;111(5):490-504.
doi: 10.1159/000508573. Epub 2020 May 11.

Neuroendocrine Tumor Omic Gene Cluster Analysis Amplifies the Prognostic Accuracy of the NETest

Affiliations
Clinical Trial

Neuroendocrine Tumor Omic Gene Cluster Analysis Amplifies the Prognostic Accuracy of the NETest

Mark Kidd et al. Neuroendocrinology. 2021.

Abstract

Background: The NETest is a multigene assay comprising 51 circulating neuroendocrine tumor (NET)-specific transcripts. The quotient of the 51-gene assay is based upon an ensemble of machine learning algorithms. Eight cancer hallmarks or "omes" (apoptome, epigenome, growth factor signalome, metabolome, proliferome, plurome, secretome, SSTRome) represent 29 genes. The NETest is an accurate diagnostic (>90%) test, but its prognostic utility has not been assessed. In this study, we describe the expansion of the NETest omic cluster components and demonstrate that integration amplifies NETest prognostic accuracy.

Methods: Group 1: n = 222; including stable disease (SD, n = 146), progressive disease (PD, n = 76), and controls (n = 139). Group 2: NET Registry NCT02270567; n = 88; prospective samples (SD, n = 54; PD, n = 34) with up to 24 months follow-up. We used PubMed literature review, interactomic analysis, nonparametric testing, Kaplan-Meier survival curves, and χ2 analyses to inform and define the prognostic significance of NET genomic "hallmarks."

Results: 2020 analyses: In-depth analyses of 47 -NETest genes identified a further six omes: fibrosome, inflammasome, metastasome, NEDome, neurome, and TFome. Group 1 analysis: Twelve omes, excluding the inflammasome and apoptome, were significantly (p < 0.05, 2.1- to 8.2-fold) elevated compared to controls. In the PD group, seven omes (proliferome, NEDome, epigenome, SSTRome, neurome, metastasome, and fibrosome) were elevated (both expression levels and fold change >2) versus SD. Group 2 analysis: All these seven omes were upregulated. In PD, they were significantly more elevated (p < 0.02) than in SD. The septet omic expression exhibited a 69% prognostic accuracy. The NETest alone was 70.5% accurate. A low NETest (≤40) integrated with epigenome/metastasome levels was an accurate prognostic for PD (90%). A high NETest (>40) including the fibrosome/NEDome predicted PD development within 3 months (100%). Using decision tree analysis to integrate the four omes (epigenome, metastasome, fibrosome, and NEDome) with the NETest score generated an overall prognostic accuracy of 93%.

Conclusions: Examination of NETest omic gene cluster analysis identified five additional clinically relevant cancer hallmarks. Identification of seven omic clusters (septet) provides a molecular pathological signature of disease progression. The integration of the quartet (epigenome, fibrosome, metastasome, NEDome) and the NETest score yielded a 93% accuracy in the prediction of future disease status.

Keywords: Biomarkers; Carcinoid; Ki-67; NETest; Neuroendocrine neoplasia; Neuroendocrine tumors; Prognosis; Progression.

PubMed Disclaimer

Publication types

Substances

Associated data