Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;39(23):4592-4602.
doi: 10.1038/s41388-020-1315-3. Epub 2020 May 11.

Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers

Affiliations

Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers

Khalid N Al-Zahrani et al. Oncogene. 2020 Jun.

Abstract

HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.

PubMed Disclaimer

References

    1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52. - DOI
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74. - DOI
    1. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA. 1992;89:10578–82. - DOI
    1. Mansour EG, Ravdin PM, Dressler L. Prognostic factors in early breast carcinoma. Cancer. 1994;74:381–400. - DOI
    1. Dankort DL, Wang Z, Blackmore V, Moran MF, Muller WJ. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol Cell Biol. 1997;17:5410–25. - DOI

Publication types

MeSH terms

Grants and funding

LinkOut - more resources