Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul;24(7):605-614.
doi: 10.1080/14728222.2020.1762568. Epub 2020 May 12.

Glioblastoma multiforme: novel therapeutic targets

Affiliations
Review

Glioblastoma multiforme: novel therapeutic targets

Matthew Muir et al. Expert Opin Ther Targets. 2020 Jul.

Abstract

Introduction: The increasingly detailed genetic characterization of glioblastoma (GBM) has failed to translate into meaningful breakthroughs in treatment. This is likely to be attributed to molecular heterogeneity of GBM. However, the understanding of the tumor microenvironment in GBM has become more refined and has revealed a wealth of therapeutic targets that may enable the disruption of angiogenesis or immunosuppression.

Areas covered: This review discusses the selective targeting of tumor-intrinsic pathways, therapies that target the GBM tumor microenvironment and relevant preclinical studies and their limitations. Relevant literature was derived from a PubMed search encompassing studies from 1989 to 2020.

Expert opinion: Despite appropriate target engagement, attempts to directly inhibit oncogenic pathways in GBM have yielded little success. This is likely attributed to the molecular heterogeneity of GBM and the presence of redundant signaling that allow for accumulation of adaptive mutations and development of drug resistance. Subsequently, there has been a shift toward therapies modulating the pro-angiogenic, immunosuppressive tumor microenvironment in GBM. The non-transformed cells in the microenvironment which includes endothelial cells, myeloid cells, and T cells, are presumably genetically stable, less susceptible to heterogeneity, and easier to target. This approach offers the highest potential for a therapeutic breakthrough in GBM.

Keywords: Glioblastoma; immunotherapy; oncogenic pathways; oncolytic virus; personalized therapy; signaling pathways; therapeutic targets; tumor associated microglia and macrophages; tumor microenvironment; tumor vaccines.

PubMed Disclaimer

Publication types

LinkOut - more resources