Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 12;12(1):66.
doi: 10.1186/s13148-020-00846-0.

Promoter methylation changes in ALOX12 and AIRE1: novel epigenetic markers for atherosclerosis

Affiliations

Promoter methylation changes in ALOX12 and AIRE1: novel epigenetic markers for atherosclerosis

Jee Yeon Kim et al. Clin Epigenetics. .

Abstract

Background: Atherosclerosis is the main cause of cardiovascular diseases such as ischemic stroke and coronary heart disease. Gene-specific promoter methylation changes have been suggested as one of the causes underlying the development of atherosclerosis. We aimed to identify and validate specific genes that are differentially expressed through promoter methylation in atherosclerotic plaques. We performed the present study in four steps: (1) profiling and identification of gene-specific promoter methylation changes in atherosclerotic tissues; (2) validation of the promoter methylation changes of genes in plaques by comparison with non-plaque intima; (3) evaluation of promoter methylation status of the genes in vascular cellular components composing atherosclerotic plaques; and (4) evaluation of promoter methylation differences in genes among monocytes, T cells, and B cells isolated from the blood of ischemic stroke patients.

Results: Upon profiling, AIRE1, ALOX12, FANK1, NETO1, and SERHL2 were found to have displayed changes in promoter methylation. Of these, AIRE1 and ALOX12 displayed higher methylation levels in plaques than in non-plaque intima, but lower than those in the buffy coat of blood. Between inflammatory cells, the three genes were significantly less methylated in monocytes than in T and B cells. In the vascular cells, AIRE1 methylation was lower in endothelial and smooth muscle cells. ALOX12 methylation was higher in endothelial, but lower in smooth muscle cells. Immunofluorescence staining showed that co-localization of ALOX12 and AIRE1 was more frequent in CD14(+)-monocytes than in CD4(+)-T cell in plaque than in non-plaque intima.

Conclusions: Promoter methylation changes in AIRE1 and ALOX12 occur in atherosclerosis and can be considered as novel epigenetic markers.

Keywords: Atherosclerosis; epigenetics; markers; promoter methylation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram for the present study to profile and identify gene-specific promoter methylation changes related with atherosclerosis. CCA common carotid artery, CEA carotid endarterectomy, MCA methylated-CpG island amplification, HUVEC human umbilical vein endothelial cell, HAEC human aortic endothelial cell, HASMC human aortic smooth muscle cell
Fig. 2
Fig. 2
Promoter CpG islands and regions for the pyrosequencing of the five target genes identified after methylation-specific PCR (a) and methylation levels of the genes in plaques (P) and non-plaque (NP) intima of common carotid arteries in 20 cadavers (b). Correlation between promoter methylation and expression of AIRE1 (c) and ALOX12 (d) in 18 carotid endarterectomy plaques. Open bar, exon 1 region; closed bar, the regions targeted for bisulfite pyrosequencing; open bar in the middle of closed bar; sequencing region, arrow; transcriptional start site of each gene, *p < 0.05 on paired t test
Fig. 3
Fig. 3
Comparison of promoter methylation status of the five target genes between vascular endothelial and smooth muscle cells (five human umbilical vein endothelial cells [HUVEC], two human aortic endothelial cells [HAEC], and two human aortic smooth muscle cell [HASMC] cell lines, (a) between carotid endarterectomy (CEA) plaques and buffy coats (BC) of blood of 27 CEA patients (b), and monocytes (M), T cells (T), B cells (B), and buffy coats (BC) of blood of 37 ischemic stroke patients (c). *p < 0.01 on paired t test, **p < 0.01 on analysis of variance analysis
Fig. 4
Fig. 4
Immunofluorescence staining for AIRE1 and infiltrated CD4(+)-T cells and CD14(+)-monocytes in atherosclerotic plaque and non-plaque intima of common carotid artery of a 54-year-old man. White arrow, cells co-stained with CD14 and AIRE1 antibodies
Fig. 5
Fig. 5
Immunofluorescence staining for ALOX12 and infiltrated CD4(+)-T cells and CD14(+)-monocytes in atherosclerotic plaque and non-plaque intima of common carotid artery of a 54-year-old man. White arrow, cells co-stained with CD14 and ALOX12 antibodies

References

    1. Mendis S, Puska P, Norrving B. Chapter 3. The underlying pathology of heart attacks and strokes. In: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. 2011: 3-18.
    1. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–2416. doi: 10.1161/CIRCULATIONAHA.109.192278. - DOI - PMC - PubMed
    1. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8:1–21. doi: 10.1161/01.ATV.8.1.1. - DOI - PubMed
    1. Sharma P. Meta-analysis of the ACE gene in ischaemic stroke. J Neurol Neurosurg Psychiatry. 1998;64:227–230. doi: 10.1136/jnnp.64.2.227. - DOI - PMC - PubMed
    1. Catto AJ, McCormack LJ, Mansfield MW, Carter AM, Bamford JM, Robinson P, Grant PJ. Apolipoprotein E polymorphism in cerebrovascular disease. Acta Neurol Scand. 2000;101:399–404. doi: 10.1034/j.1600-0404.2000.90308a.x. - DOI - PubMed

Publication types

MeSH terms