Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 12;10(1):139.
doi: 10.1038/s41398-020-0811-0.

Right-sided brain lesions predominate among patients with lesional mania: evidence from a systematic review and pooled lesion analysis

Affiliations

Right-sided brain lesions predominate among patients with lesional mania: evidence from a systematic review and pooled lesion analysis

J Bernardo Barahona-Corrêa et al. Transl Psychiatry. .

Abstract

Despite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated. Here, we aimed to test whether focal brain lesions in lesional mania are more often right- than left-sided, and if lesions converge on areas relevant to mood regulation. We thus performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflect diagnoses and structures of interest, as well as lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, selecting reports of adult-onset hypomania, mania or mixed state following a focal brain lesion, for pooled-analyses of individual patient data. Eligible lesion images were manually traced onto the corresponding MNI space slices, and lesion topography analyzed using standard brain atlases. Using this approach, data from 211 lesional mania patients was extracted from 114 reports. Among 201 cases with focal lesions, more patients had lesions involving exclusively the right (60.7%) than exclusively the left (11.4%) hemisphere. In further analyses of 56 eligible lesion images, while findings should be considered cautiously given the potential for selection bias of published lesion images, right-sided predominance of lesions was confirmed across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, and several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions. Such pooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.

PubMed Disclaimer

Conflict of interest statement

JBB-C received honoraria as member of a local Advisory Board (Trevicta) from Janssen-Cilag, Ltd. GC was supported by Fundação para a Ciência e Tecnologia (FCT) through a PhD Scholarship (SFRH/BD/130210/2017). AJO-M was supported by FCT through a Junior Research and Career Development Award from the Harvard Medical Portugal Program (HMSP/ICJ/0020/2011). JBB-C and AJO-M are supported by grant FCT-PTDC/MEC-PSQ/30302/2017-IC&DT-LISBOA-01-0145-FEDER, funded by national funds from FCT/MCTES and co-funded by FEDER, under the Partnership Agreement Lisboa 2020 - Programa Operacional Regional de Lisboa. GC and AJO-M are supported by grant FCT-PTDC/MED-NEU/31331/2017, funded by FCT/MCTES. AJO-M is recipient of a grant from Schuhfried GmBH for norming and validation of cognitive tests, and is national coordinator for Portugal of a Non-interventional Study (EDMS-ERI-143085581, 4.0) to characterize a Treatment-Resistant Depression Cohort in Europe, sponsored by Janssen-Cilag Ltd. None of the aforementioned agencies had a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication. The remaining authors declare that they have no potential conflicts of interest involving this work, including relevant financial activities outside the submitted work and any other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing what is written.

Figures

Fig. 1
Fig. 1. Article selection flowchart.
Article selection ws performed according to PRISMA Statement.
Fig. 2
Fig. 2. Lesion distribution by major brain areas.
a Lesion distribution for all cases in the literature review. b Lesion distribution for cases with vascular lesions. c Lesion distribution for cases with non-vascular lesions. d Comparison of lesion distribution for tumor cases identified in this literature review (n = 19) with tumor distribution described by Ostrom et al. for a large patient database (n = 169934). In what brain tumors are concerned, regions were defined according to the International Classification of Diseases for Oncology (ICD-O), without considering tumours originating from the meninges (n = 14), ventricles (n = 2), cranial nerves (n = 1), or of unspecified origin (n = 4). “Other Brain” refers to lesions spanning multiple areas (C71.8: “neoplasm involving two or more sites, corpus callosum and tapetum”) or when areas were insufficiently specified (C71.9: “intracranial site, cranial fossa not otherwise specified, anterior cranial fossa, middle cranial fossa, posterior cranial fossa and suprasellar”). “Cerebrum” refers to multiple subcortical structures (C71.0: “basal ganglia, central white matter, unspecified cerebral cortex, cerebral hemisphere, cerebral white matter, corpus striatum, globus pallidus, hypothalamus, insula, internal capsule, island of Reil, operculum, pallium, putamen, rhinencephalon, supratentorial brain not otherwise specified and thalamus”). aDoes not include the following case series, which did not provide enough information on individual lesion etiology: Carran 2003, Robinson 1988, Starkstein 1987 and Starkstein 1991 (See Supplementary Material for complete references – Supplementary Table S3). *p value < 0.05.
Fig. 3
Fig. 3. Distribution of brain lesions associated with secondary mania in 56 patients with eligible lesion images.
a Comparison between right vs. left-sided lesions. Each lesion was traced manually onto a common brain atlas (MNI) and projected on the closest depicted slice. Numbers above slices indicate z-coordinates in MNI space. The color code indicates maximal number of lesions overlapping on a single voxel. b Subtraction plot contrasting 29 right-sided stroke patients with secondary bipolar disorder (red-yellow) versus 439 unselected right hemisphere stroke patients (blue-green). In this plot, a value of, for example, 30, reflects that the voxel is damaged 30% more frequently in patients with secondary bipolar disorder than in unselected patients (for more details on the method see Rorden and Karnath). To improve visualization, lesions of mania patients were projected onto the closest depicted slice before plot generation.

References

    1. Stein, G., Wilkinson, G. Seminars in General Adult Psychiatry (RCPsych Publications, 2007).
    1. Krauthammer C, Klerman GL. Secondary mania: manic syndromes associated with antecedent physical illness or drugs. Arch. Gen. Psychiatry. 1978;35:1333–1339. - PubMed
    1. Satzer D, Bond DJ. Mania secondary to focal brain lesions: implications for understanding the functional neuroanatomy of bipolar disorder. Bipolar Disord. 2016;18:205–220. - PubMed
    1. Morken G, Vaaler AE, Folden GE, Andreassen OA, Malt UF. Age at onset of first episode and time to treatment in in-patients with bipolar disorder. Br. J. Psychiatry. 2009;194:559–560. - PubMed
    1. Braun CM, Daigneault R, Gaudelet S, Guimond A. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition symptoms of mania: which one(s) result(s) more often from right than left hemisphere lesions? Compr. Psychiatry. 2008;49:441–459. - PubMed

Publication types