Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 23;14(6):7581-7592.
doi: 10.1021/acsnano.0c03466. Epub 2020 Jun 3.

Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications

Affiliations

Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications

Sasan V Grayli et al. ACS Nano. .

Abstract

The confinement of spatially extended electromagnetic waves to nanometer-scale metal structures can be harnessed for application in information processing, energy harvesting, sensing, and catalysis. Metal nanostructures enable negative refractive index, subwavelength resolution imaging, and patterning through engineered metamaterials and promise technologies that will operate in the quantum plasmonics regime. However, the controlled fabrication of high-definition single-crystal subwavelength metal nanostructures has remained a significant hurdle due to the tendency for polycrystalline metal growth using conventional physical vapor deposition methods and the challenges associated with placing solution-grown nanocrystals in desired orientations and locations on a surface to manufacture functional devices. Here, we introduce a scalable and green wet chemical approach to monocrystalline noble metal thin films and nanostructures. The method enables the fabrication of ultrasmooth, epitaxial, single-crystal films of controllable thickness that are ideal for the subtractive manufacture of nanostructures through ion beam milling and additive crystalline nanostructure via lithographic patterning for large-area, single-crystal metasurfaces and high aspect ratio nanowires. Our single-crystal nanostructures demonstrate improved feature quality, pattern transfer yield, reduced optical and resistive losses, and tailored local fields to yield greater optical response and improved stability compared to those of polycrystalline structures-supporting greater local field enhancements and enabling practical advances at the nanoscale.

Keywords: epitaxial electroless deposition; metamaterials; noble metals; plasmonics and nanophotonics; single-crystal nanostructures.

PubMed Disclaimer

LinkOut - more resources