Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 13;12(1):56.
doi: 10.1186/s13195-020-00601-w.

Relevance of biomarkers across different neurodegenerative diseases

Affiliations
Review

Relevance of biomarkers across different neurodegenerative diseases

Alexander J Ehrenberg et al. Alzheimers Res Ther. .

Erratum in

  • Correction to: Relevance of biomarkers across different neurodegenerative diseases.
    Ehrenberg AJ, Khatun A, Coomans E, Betts MJ, Capraro F, Thijssen EH, Senkevich K, Bharucha T, Jafarpour M, Young PNE, Jagust W, Carter SF, Lashley T, Grinberg LT, Pereira JB, Mattsson-Carlgren N, Ashton NJ, Hanrieder J, Zetterberg H, Schöll M, Paterson RW. Ehrenberg AJ, et al. Alzheimers Res Ther. 2020 Jun 9;12(1):71. doi: 10.1186/s13195-020-00637-y. Alzheimers Res Ther. 2020. PMID: 32517788 Free PMC article.

Abstract

Background: The panel of fluid- and imaging-based biomarkers available for neurodegenerative disease research is growing and has the potential to close important gaps in research and the clinic. With this growth and increasing use, appropriate implementation and interpretation are paramount. Various biomarkers feature nuanced differences in strengths, limitations, and biases that must be considered when investigating disease etiology and clinical utility. For example, neuropathological investigations of Alzheimer's disease pathogenesis can fall in disagreement with conclusions reached by biomarker-based investigations. Considering the varied strengths, limitations, and biases of different research methodologies and approaches may help harmonize disciplines within the neurodegenerative disease field.

Purpose of review: Along with separate review articles covering fluid and imaging biomarkers in this issue of Alzheimer's Research and Therapy, we present the result of a discussion from the 2019 Biomarkers in Neurodegenerative Diseases course at the University College London. Here, we discuss themes of biomarker use in neurodegenerative disease research, commenting on appropriate use, interpretation, and considerations for implementation across different neurodegenerative diseases. We also draw attention to areas where biomarker use can be combined with other disciplines to understand issues of pathophysiology and etiology underlying dementia. Lastly, we highlight novel modalities that have been proposed in the landscape of neurodegenerative disease research and care.

Keywords: Alzheimer’s disease; Amyloid; Biomarkers; Cerebrospinal fluid; Magnetic resonance imaging; Neurodegenerative diseases; Neurofilament light chain; Plasma biomarkers; Positron emission tomography; Tau.

PubMed Disclaimer

Conflict of interest statement

AJE has accepted compensation as a consultant to Epiodyne Inc. WJJ is a consultant for Genentech, Novartis, and Bioclinica. NM serves as a consultant for the Alzheimer’s Disease Neuroimaging Initiative. LTG has received research support from AVID Radiopharmecuticals and Eli Lily. HZ has served at scientific advisory boards for Roche Diagnostics, Wave, Samumed, and CogRx; has given lectures in symposia sponsored by Alzecure and Biogen; and is a co-founder of the Brain Biomarker Solutions in Gothenburg AB, a GU Ventures-based platform company at the University of Gothenburg. MS has served at a scientific advisory board for Servier. All other authors declare that they have no competing interests.

References

    1. Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018. - DOI - PMC - PubMed
    1. Nicoll JAR, Buckland GR, Harrison CH, Page A, Harris S, Love S, et al. Persistent neuropathological effects 14 years following amyloid-beta immunization in Alzheimer’s disease. Brain. 2019;142(7):2113–2126. doi: 10.1093/brain/awz142. - DOI - PMC - PubMed
    1. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–2193. doi: 10.1093/brain/awy146. - DOI - PMC - PubMed
    1. Rajan KB, Weuve J, Barnes LL, Wilson RS, Evans DA. Prevalence and incidence of clinically diagnosed Alzheimer’s disease dementia from 1994 to 2012 in a population study. Alzheimers Dement. 2019;15(1):1–7. doi: 10.1016/j.jalz.2018.07.216. - DOI - PMC - PubMed
    1. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123(1):1–11. doi: 10.1007/s00401-011-0910-3. - DOI - PMC - PubMed

Publication types