Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;33(10):2046-2057.
doi: 10.1038/s41379-020-0568-2. Epub 2020 May 13.

T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics

Affiliations
Free article

T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics

Min Shi et al. Mod Pathol. 2020 Oct.
Free article

Abstract

Benign clonal T-cell expansions in reactive immune responses often complicate the laboratory diagnosis T-cell neoplasia. We recently introduced a novel flow cytometry assay to detect T-cell clones in blood and bone marrow, based on the identification of a monophasic T-cell receptor (TCR) β chain constant region-1 (TRBC1) expression pattern within a phenotypically distinct TCRαβ T-cell subset. In routine laboratory practice, T-cell clones of uncertain significance (T-CUS) were detected in 42 of 159 (26%) patients without T-cell malignancy, and in 3 of 24 (13%) healthy donors. Their phenotype (CD8+/CD4-: 78%, CD4-/CD8-: 12%, CD4+/CD8+: 9%, or CD4+/CD8-: 2%) closely resembled that of 26 cases of T-cell large granular lymphocytic leukemia (T-LGLL) studied similarly, except for a much smaller clone size (p < 0.0001), slightly brighter CD2 and CD7, and slightly dimmer CD3 expression (p < 0.05). T-CUS was not associated with age, gender, comorbidities, or peripheral blood counts. TCR-Vβ repertoire analysis confirmed the clonality of T-CUS, and identified additional clonotypic CD8-positive subsets when combined with TRBC1 analysis. We hereby report the phenotypic features and incidence of clonal T-cell subsets in patients with no demonstrable T-cell neoplasia, providing a framework for the differential interpretation of T-cell clones based on their size and phenotypic properties.

PubMed Disclaimer

References

    1. Maini MK, Casorati G, Dellabona P, Wack A, Beverley PC. T-cell clonality in immune responses. Immunol Today. 1999;20:262–266. - PubMed
    1. Langerak AW, Groenen PJ, Bruggemann M, Beldjord K, Bellan C, Bonello L, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26:2159–2171. - PubMed - PMC
    1. Shin S, Kim AH, Park J, Kim M, Lim J, Kim Y, et al. Analysis of immunoglobulin and T cell receptor gene rearrangement in the bone marrow of lymphoid neoplasia using BIOMED-2 multiplex polymerase chain reaction. Int J Med Sci. 2013;10:1510–1517. - PubMed - PMC
    1. Zhang B, Beck AH, Taube JM, Kohler S, Seo K, Zwerner J, et al. Combined use of PCR-based TCRG and TCRB clonality tests on paraffin-embedded skin tissue in the differential diagnosis of mycosis fungoides and inflammatory dermatoses. J Mol Diagn. 2010;12:320–327. - PubMed - PMC
    1. Langerak AW, Molina TJ, Lavender FL, Pearson D, Flohr T, Sambade C, et al. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2007;21:222–229. - PubMed

Substances

LinkOut - more resources