Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:112:110919.
doi: 10.1016/j.msec.2020.110919. Epub 2020 Apr 4.

Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins

Affiliations

Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins

Paulo C F da Câmara et al. Mater Sci Eng C Mater Biol Appl. 2020 Jul.

Abstract

To develop hemocompatible surfaces, a cationic tannin derivate (TN) was used to prepare polyelectrolyte multilayers (PEMs) with the glycosaminoglycans heparin (HEP) and chondroitin sulfate (CS). The surface chemistry of the PEMs was characterized using X-ray photoelectron spectroscopy and water contact angle measurements. PEMs assembled with chitosan (CHI) and HEP or CS were used as controls. We investigate the hemocompatibility of PEMs by analyzing the adsorption of key blood serum proteins, adhesion and activation of platelets, and blood clotting kinetics. TN- and CHI-based PEMs adsorb similar amounts of albumin, whereas fibrinogen adsorption was more pronounced on TN-based PEMs, due to strong association with catechol groups. However, TN-based PEMs significantly reduce both platelet adhesion and platelet activation, while CHI-based PEMs promote platelet adhesion and activation. The whole-blood clotting kinetics assay also shows lower blood coagulation on TN-based PEMs. TN is an amphoteric, cationic, condensed tannin derivative with resonance structures. It also contains catechol groups, which are similar to those in mussel adhesive protein. These chemical features enable strong association with fibrinogen, which promotes the platelet-repelling effect. This study provides a new perspective for understanding platelet adhesion and activation on biomaterial surfaces, toward the development of new blood-compatible surfaces using a tannin derivative-based polymer.

Keywords: Catechol groups; Fibrinogen; Hemocompatibility; Platelets; Tannins.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources