Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep;1867(9):118742.
doi: 10.1016/j.bbamcr.2020.118742. Epub 2020 May 14.

Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy

Affiliations
Free article
Review

Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy

So-Ichiro Fukada et al. Biochim Biophys Acta Mol Cell Res. 2020 Sep.
Free article

Abstract

Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle-resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that 'degenerative damage' to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.

Keywords: Damages; Hypertrophy; Muscle satellite cells; Regeneration; Skeletal muscle.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources