Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;22(8):1296-1302.
doi: 10.1038/s41436-020-0824-3. Epub 2020 May 18.

Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy

Affiliations
Free article

Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy

Denise M Kay et al. Genet Med. 2020 Aug.
Free article

Abstract

Purpose: Spinal muscular atrophy (SMA) was added to the Recommended Uniform Screening Panel (RUSP) in July 2018, following FDA approval of the first effective SMA treatment, and demonstration of feasibility of high-throughput newborn screening using a primary molecular assay. SMA newborn screening was implemented in New York State (NYS) on 1 October 2018.

Methods: Screening was conducted using DNA extracted from dried blood spots with a multiplex real-time quantitative polymerase chain reaction (qPCR) assay targeting the recurrent SMN1 exon 7 gene deletion.

Results: During the first year, 225,093 infants were tested. Eight screened positive, were referred for follow-up, and confirmed to be homozygous for the deletion. Infants with two or three copies of the SMN2 gene, predicting more severe, earlier-onset SMA, were treated with antisense oligonucleotide and/or gene therapy. One infant with ≥4 copies SMN2 also received gene therapy.

Conclusion: Newborn screening permits presymptomatic SMA diagnosis, when treatment initiation is most beneficial. At 1 in 28,137 (95% confidence interval [CI]: 1 in 14,259 to 55,525), the NYS SMA incidence is 2.6- to 4.7-fold lower than expected. The low SMA incidence is likely attributable to imprecise and biased estimates, coupled with increased awareness, access to and uptake of carrier screening, genetic counseling, cascade testing, prenatal diagnosis, and advanced reproductive technologies.

Keywords: Recommended Uniform Screening Panel (RUSP); SMN1; carrier screening; newborn screening (NBS); spinal muscular atrophy (SMA).

PubMed Disclaimer

Comment in

References

    1. Prior TW, Leach ME. Finanger E. Spinal muscular atrophy. In: Adam MP, Ardinger HH, Pagon RA et al., editors. GeneReviews. Seattle, WA: University of Washington; 1993–2019.
    1. Zerres K, Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995;52:518–523. - DOI
    1. Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72 400 specimens. Eur J Hum Genet. 2012;20:27–32. - DOI
    1. Ogino S, Leonard DGB, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet. 2002;110:301–307. - DOI
    1. Emery AEH. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord. 1991;1:19–29. - DOI

Publication types

Substances

LinkOut - more resources