Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 21;16(23):5348-5365.
doi: 10.1039/d0sm00361a. Epub 2020 May 18.

Irreversible adsorption of polymer melts and nanoconfinement effects

Affiliations

Irreversible adsorption of polymer melts and nanoconfinement effects

Simone Napolitano. Soft Matter. .

Abstract

For almost a decade, growing experimental evidence has revealed a strong correlation between the properties of nanoconfined polymers and the number of chains irreversibly adsorbed onto nonrepulsive interfaces, e.g. the supporting substrate of thin polymer coatings, or nanofillers dispersed in polymer melts. Based on such a correlation, it has already been possible to tailor structural and dynamics properties - such as the glass transition temperature, the crystallization rate, the thermal expansion coefficients, the viscosity and the wettability - of nanomaterials by controlling the adsorption kinetics. This evidence indicates that irreversible adsorption affects nanoconfinement effects. More recently, also the opposite phenomenon was experimentally observed: nanoconfinement alters interfacial interactions and, consequently, also the number of chains adsorbed in equilibrium conditions. In this review we discuss this intriguing interplay between irreversible adsorption and nanoconfinement effects in ultrathin polymer films. After introducing the methods currently used to prepare adsorbed layers and to measure the number of irreversibly adsorbed chains, we analyze the models employed to describe the kinetics of adsorption in polymer melts. We then discuss the structure of adsorbed polymer layers, focusing on the complex macromolecular architecture of interfacial chains and on their thermal expansion; we examine the way in which the structure of the adsorbed layer affects the thermal glass transition temperature, vitrification, and crystallization. By analyzing segmental dynamics of 1D confined systems, we describe experiments to track the changes in density during adsorption. We conclude this review with an analysis of the impact of nanoconfinement on adsorption, and a perspective on future work where we also address the key ideas of irreversibility, equilibration and long-range interactions.

PubMed Disclaimer

Comment in

LinkOut - more resources