Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:120:103757.
doi: 10.1016/j.compbiomed.2020.103757. Epub 2020 Apr 11.

Supervised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic seizure detection

Affiliations

Supervised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic seizure detection

K P Ayodele et al. Comput Biol Med. 2020 May.

Abstract

Numerous automatic epileptic seizure detectors (ESDs) with excellent performances have been reported, but they generally experience performance degradation when tested with real-life clinical data. This has been blamed on the scarcity of high-quality training data, which leads to models that generalize poorly. There is consequently interest in methods to improve the quality and quantity of training data for ESDs. This study used a domain generalization approach to combine data from two different datasets for training an ESD, which was thereafter tested on a third dataset. A subspace of the CHB-MIT and TUSZ scalp EEG seizure datasets was extracted using transfer component analysis, based on a reproducing kernel Hilbert space approach. We then used the Azimuthal Equidistant Projection to transform 3D electrode coordinates into 2D space, followed by interpolation using the Clough-Tocher technique to generate 16x16 rasters. We thereafter generated feature vectors, each of which was a sequence of 17 ten-layer 16x16 raster arrays. The vectors were used to train a recurrent-convolutional neural network. The network had a 128-unit long short-term memory layer with inputs from 17 parallel networks each with three stacks of convolutional layers. Testing was based on a private 26-subject dataset, combined with randomly selected subsets of the CHB-MIT and TUSZ datasets. A combined sensitivity of 74.5% was achieved, along with a false positive per hour rate of 0.84, and a latency of 2.32 s. Detection sensitivity on the private dataset was 72.5%. These results compare favorably with results of large-scale validation studies in literature and confirm the viability of this approach to increasing the size of training datasets for ESDs.

Keywords: Epileptic seizure; Recurrent convolutional neural network; Supervised domain generalization; Transfer component analysis.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.