Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 14;12(5):1122.
doi: 10.3390/polym12051122.

History of Cyclodextrin Nanosponges

Affiliations
Review

History of Cyclodextrin Nanosponges

Ilona Krabicová et al. Polymers (Basel). .

Abstract

Nowadays, research in the field of nanotechnology and nanomedicine has become increasingly predominant, focusing on the manipulation and development of materials on a nanometer scale. Polysaccharides have often been used as they are safe, non-toxic, hydrophilic, biodegradable and are low cost. Among them, starch derivatives and, in particular, cyclodextrin-based nanosponges (CD NSs) have recently emerged due to the outstanding properties attributable to their peculiar structure. In fact, alongside the common polysaccharide features, such as the presence of tunable functional groups and their ability to interact with biological tissues, thus giving rise to bioadhesion, which is particularly useful in drug delivery, what makes CD NSs unique is their three-dimensional network made up of crosslinked cyclodextrin units. The name "nanosponge" appeared for the first time in the 1990s due to their nanoporous, sponge-like structure and responded to the need to overcome the limitations of native cyclodextrins (CDs), particularly their water solubility and inability to encapsulate charged and large molecules efficiently. Since CD NSs were introduced, efforts have been made over the years to understand their mechanism of action and their capability to host molecules with low or high molecular weight, charged, hydrophobic or hydrophilic by changing the type of cyclodextrin, crosslinker and degree of crosslinking used. They enabled great advances to be made in various fields such as agroscience, pharmaceutical, biomedical and biotechnological sectors, and NS research is far from reaching its conclusion. This review gives an overview of CD NS research, focusing on the origin and key points of the historical development in the last 50 years, progressing from relatively simple crosslinked networks in the 1960s to today's multifunctional polymers. The approach adopted in writing the present study consisted in exploring the historical evolution of NSs in order to understand their role today, and imagine their future.

Keywords: crosslinked polymer; cyclodextrin nanosponge; history.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Number of papers on cyclodextrin-based nanosponges (CD NSs) published over the years from 1999 until 2019.
Figure 2
Figure 2
Research areas in which CD NSs are involved.
Figure 3
Figure 3
Hierarchy analysis approach to choose the best cross-linker.
Figure 4
Figure 4
Timeline of the historical development of cyclodextrin-based nanosponges.

Similar articles

Cited by

References

    1. Torne S.J., Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17:419–425. doi: 10.3109/10717541003777233. - DOI - PubMed
    1. Cavalli R., Trotta F., Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 2006;56:209–213. doi: 10.1007/s10847-006-9085-2. - DOI
    1. Vyas A., Saraf S., Saraf S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 2008;62:23–42. doi: 10.1007/s10847-008-9456-y. - DOI
    1. Trotta F. In: Cyclodextrin Nanosponges and Their Applications. Bilensoy E., editor. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011.
    1. Subramanian S., Singireddy A., Krishnamoorthy K., Rajappan M. Nanosponges: A novel class of drug delivery system—Review. J. Pharm. Pharm. Sci. 2012;15:103–111. doi: 10.18433/j3k308. - DOI - PubMed

LinkOut - more resources