Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Jun;52(6):572-581.
doi: 10.1038/s41588-020-0609-2. Epub 2020 May 18.

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses

Haoyu Zhang #  1   2 Thomas U Ahearn #  1 Julie Lecarpentier  3 Daniel Barnes  3 Jonathan Beesley  4 Guanghao Qi  2 Xia Jiang  5 Tracy A O'Mara  4 Ni Zhao  2 Manjeet K Bolla  6 Alison M Dunning  3 Joe Dennis  6 Qin Wang  6 Zumuruda Abu Ful  7 Kristiina Aittomäki  8 Irene L Andrulis  9 Hoda Anton-Culver  10 Volker Arndt  11 Kristan J Aronson  12 Banu K Arun  13 Paul L Auer  14   15 Jacopo Azzollini  16 Daniel Barrowdale  17 Heiko Becher  18 Matthias W Beckmann  19 Sabine Behrens  20 Javier Benitez  21 Marina Bermisheva  22 Katarzyna Bialkowska  23 Ana Blanco  24   25   26 Carl Blomqvist  27   28 Natalia V Bogdanova  29   30   31 Stig E Bojesen  32   33   34   35 Bernardo Bonanni  36 Davide Bondavalli  36 Ake Borg  37 Hiltrud Brauch  38   39   40 Hermann Brenner  11   40   41 Ignacio Briceno  42 Annegien Broeks  43 Sara Y Brucker  44 Thomas Brüning  45 Barbara Burwinkel  46   47 Saundra S Buys  48 Helen Byers  49 Trinidad Caldés  50 Maria A Caligo  51 Mariarosaria Calvello  36 Daniele Campa  20   52 Jose E Castelao  53 Jenny Chang-Claude  20   54 Stephen J Chanock  1 Melissa Christiaens  55 Hans Christiansen  31 Wendy K Chung  56 Kathleen B M Claes  57 Christine L Clarke  58 Sten Cornelissen  43 Fergus J Couch  59 Angela Cox  60 Simon S Cross  61 Kamila Czene  62 Mary B Daly  63 Peter Devilee  64 Orland Diez  65 Susan M Domchek  66 Thilo Dörk  30 Miriam Dwek  67 Diana M Eccles  68 Arif B Ekici  69 D Gareth Evans  49   70 Peter A Fasching  19   71 Jonine Figueroa  72 Lenka Foretova  73 Florentia Fostira  74 Eitan Friedman  75 Debra Frost  17 Manuela Gago-Dominguez  76   77 Susan M Gapstur  78 Judy Garber  79 José A García-Sáenz  50 Mia M Gaudet  78 Simon A Gayther  80 Graham G Giles  81   82   83 Andrew K Godwin  84 Mark S Goldberg  85   86   87 David E Goldgar  88 Anna González-Neira  35 Mark H Greene  89 Jacek Gronwald  23 Pascal Guénel  90 Lothar Häberle  91 Eric Hahnen  92 Christopher A Haiman  93 Christopher R Hake  94 Per Hall  62   95 Ute Hamann  96 Elaine F Harkness  97   98 Bernadette A M Heemskerk-Gerritsen  99 Peter Hillemanns  30 Frans B L Hogervorst  100 Bernd Holleczek  101 Antoinette Hollestelle  99 Maartje J Hooning  99 Robert N Hoover  1 John L Hopper  82 Anthony Howell  102 Hanna Huebner  19 Peter J Hulick  103 Evgeny N Imyanitov  104 kConFab InvestigatorsABCTB InvestigatorsClaudine Isaacs  105 Louise Izatt  106 Agnes Jager  99 Milena Jakimovska  107 Anna Jakubowska  23   108 Paul James  109 Ramunas Janavicius  110   111 Wolfgang Janni  112 Esther M John  113 Michael E Jones  114 Audrey Jung  20 Rudolf Kaaks  20 Pooja Middha Kapoor  20   115 Beth Y Karlan  116 Renske Keeman  43 Sofia Khan  117 Elza Khusnutdinova  22   118 Cari M Kitahara  119 Yon-Dschun Ko  120 Irene Konstantopoulou  74 Linetta B Koppert  121 Stella Koutros  1 Vessela N Kristensen  122   123 Anne-Vibeke Laenkholm  124 Diether Lambrechts  125   126 Susanna C Larsson  127   128 Pierre Laurent-Puig  129 Conxi Lazaro  130 Emilija Lazarova  131 Flavio Lejbkowicz  7 Goska Leslie  6 Fabienne Lesueur  132 Annika Lindblom  133   134 Jolanta Lissowska  135 Wing-Yee Lo  38   136 Jennifer T Loud  89 Jan Lubinski  23 Alicja Lukomska  23 Robert J MacInnis  81   82 Arto Mannermaa  137   138   139 Mehdi Manoochehri  96 Siranoush Manoukian  16 Sara Margolin  95   140 Maria Elena Martinez  77   141 Laura Matricardi  142 Lesley McGuffog  6 Catriona McLean  143 Noura Mebirouk  144 Alfons Meindl  145 Usha Menon  146 Austin Miller  147 Elvira Mingazheva  118 Marco Montagna  142 Anna Marie Mulligan  148   149 Claire Mulot  129 Taru A Muranen  117 Katherine L Nathanson  66 Susan L Neuhausen  150 Heli Nevanlinna  117 Patrick Neven  55 William G Newman  49   70 Finn C Nielsen  151 Liene Nikitina-Zake  152 Jesse Nodora  77   153 Kenneth Offit  154 Edith Olah  155 Olufunmilayo I Olopade  156   157 Håkan Olsson  158   159 Nick Orr  160 Laura Papi  161 Janos Papp  155 Tjoung-Won Park-Simon  30 Michael T Parsons  4 Bernard Peissel  16 Ana Peixoto  162 Beth Peshkin  163 Paolo Peterlongo  164 Julian Peto  6   165 Kelly-Anne Phillips  82   166   167 Marion Piedmonte  147 Dijana Plaseska-Karanfilska  107 Karolina Prajzendanc  23 Ross Prentice  14 Darya Prokofyeva  118 Brigitte Rack  112 Paolo Radice  168 Susan J Ramus  169   170   171 Johanna Rantala  172 Muhammad U Rashid  96   173 Gad Rennert  7 Hedy S Rennert  7 Harvey A Risch  174 Atocha Romero  175   176 Matti A Rookus  177 Matthias Rübner  91 Thomas Rüdiger  178 Emmanouil Saloustros  179 Sarah Sampson  180 Dale P Sandler  181 Elinor J Sawyer  182 Maren T Scheuner  183 Rita K Schmutzler  92 Andreas Schneeweiss  47   184 Minouk J Schoemaker  114 Ben Schöttker  11 Peter Schürmann  30 Leigha Senter  185 Priyanka Sharma  186 Mark E Sherman  187 Xiao-Ou Shu  188 Christian F Singer  189 Snezhana Smichkoska  131 Penny Soucy  190 Melissa C Southey  83 John J Spinelli  191   192 Jennifer Stone  82   193 Dominique Stoppa-Lyonnet  194 EMBRACE StudyGEMO Study CollaboratorsAnthony J Swerdlow  114   195 Csilla I Szabo  196 Rulla M Tamimi  5   197   198 William J Tapper  199 Jack A Taylor  181   200 Manuel R Teixeira  162   176 MaryBeth Terry  201 Mads Thomassen  202 Darcy L Thull  203 Marc Tischkowitz  204   205 Amanda E Toland  206 Rob A E M Tollenaar  207 Ian Tomlinson  208   209 Diana Torres  96   210 Melissa A Troester  211 Thérèse Truong  90 Nadine Tung  212 Michael Untch  213 Celine M Vachon  214 Ans M W van den Ouweland  215 Lizet E van der Kolk  100 Elke M van Veen  49   70 Elizabeth J vanRensburg  216 Ana Vega  24   25   26 Barbara Wappenschmidt  92 Clarice R Weinberg  217 Jeffrey N Weitzel  218 Hans Wildiers  55 Robert Winqvist  219   220   221   222 Alicja Wolk  108   127   128 Xiaohong R Yang  1 Drakoulis Yannoukakos  74 Wei Zheng  188 Kristin K Zorn  223 Roger L Milne  81   82   83 Peter Kraft  5   198 Jacques Simard  190 Paul D P Pharoah  3   6 Kyriaki Michailidou  6   224   225 Antonis C Antoniou  6 Marjanka K Schmidt  43   226 Georgia Chenevix-Trench  4 Douglas F Easton  3 Nilanjan Chatterjee  227   228 Montserrat García-Closas  1
Affiliations
Meta-Analysis

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses

Haoyu Zhang et al. Nat Genet. 2020 Jun.

Abstract

Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None to report

Figures

Extended Data Fig. 1
Extended Data Fig. 1. Overview of the analytic strategy and results from the investigation of breast cancer susceptibility variants in women of European descent.
Analyses included investigating for susceptibility variants for overall breast cancer (invasive, in-situ or unknown invasiveness) and for susceptibility variants accounting for tumor heterogeneity according to the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and grade, and specifically investigating for variants that predispose for risk of the triple-negative subtype. 1) Genotyping data from two Illumina genome-wide custom arrays, the iCOGS and Oncoarray, and imputed to the 1000 Genomes Project (Phase 3). (2) Overall breast cancer (invasive, in-situ, or unknown invasiveness) analyses included 82 studies from the Breast Cancer Association Consortium (BCAC; 118,474 cases and 96,201 controls) and summary level data from 11 other breast cancer GWAS (14,910 cases and 17,588 controls; Supplementary Table 1). (3) Analyses accounting for tumor marker heterogeneity according to ER, PR, HER2 and grade included 81 studies from BCAC (106,278 invasive cases and 91,477 controls). (4) Analyses investigating triple-negative susceptibility variants included 91,477 controls and 8,602 triple-negative TN (effective sample, see Supplementary Note) cases from BCAC and 9,414 affected and 9,494 unaffected BRCA1/2 carriers from 60 studies from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA; Supplementary Table 3). (5) Variants excluded following conditional analyses showing the identified variants to not be independent (P>1×10–6) of 178 known susceptibility variants (see Online Methods). (6) See Supplementary Figure 6 for results of country-specific sensitivity analyses. (7) See Supplementary Table 5 for the 22 independent susceptibility variants identified in overall breast cancer analyses. (8) See Supplementary Table 6 for the 16 independent susceptibility variants identified using two-stage polytomous regression, accounting for tumor markers heterogeneity according to ER, PR, HER2, and grade. Note that 8 of the 16 variants were also detected in the overall breast cancer analysis (9) See Supplementary Table 7 for the 3 independent susceptibility variants identified in the CIMBA / BCAC- triple-negative TN meta-analysis. Note that rs78378222 was detected in both the analyses using the two-stage polytomous regression and in CIMBA / BCAC- triple-negative TN.
Extended Data Fig. 2
Extended Data Fig. 2. Associations between three different polygenetic risk scores,, and luminal A-like risk in the test dataset.
Odds ratios for different quantiles of the PRS against the middle quantile of the PRS. The odds ratios were estimated using the test dataset like (n = 7,325 Luminal-A like cases, n = 20,815 controls).
Extended Data Fig. 3
Extended Data Fig. 3. Associations between three different polygenetic risk scores,, and luminal B/HER2-negative-like risk in the test dataset.
Odds ratios for different quantiles of the PRS against the middle quantile of the PRS. The odds ratios were estimated using the test dataset like (n= 1,779 Luminal B/HER2-negative-like cases, n = 20,815 controls).
Extended Data Fig. 4
Extended Data Fig. 4. Associations between three different polygenetic risk scores,, and luminal B-like risk in the test dataset.
Odds ratios for different quantiles of the PRS against the middle quantile of the PRS. The odds ratios were estimated using the test dataset like (n = 1,682 Luminal B-like cases, n = 20,815 controls).
Extended Data Fig. 5
Extended Data Fig. 5. Associations between three different polygenetic risk scores,, and HER2-enriched-like risk in the test dataset.
Odds ratios for different quantiles of the PRS against the middle quantile of the PRS. The odds ratios were estimated using the test dataset like (n = 718 HER2-enriched- like, n = 20,815 controls).
Extended Data Fig. 6
Extended Data Fig. 6. Associations between three different polygenetic risk scores,, and triple-negative risk in the test dataset.
Odds ratios for different quantiles of the PRS against the middle quantile of the PRS. The odds ratios were estimated using the test dataset like (n = 2,006 triple-negative cases, n = 20,815 controls).
Figure 1.
Figure 1.
Ideogram of all the independent genome-wide significant breast cancer susceptibility variants in overall, subtypes, BCAC triple-negative (TN) and CIMBA BRCA1 carriers meta-analysis. The 32 novel variants are labeled with arrows. The other significant variants are within +−500 or LD > 0.3 with previously reported variants.
Figure 2.
Figure 2.
Heatmap and clustering of p-values from marker specific heterogeneity test for 32 breast cancer susceptibility loci (n = 106,278 invasive cases, n = 91,477 controls). P-values are for associations between the most significant variants marking each loci and estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) or grade, adjusting for top ten principal components and age. P-values are raw p-values from two-tailed z-test statistics. Fifteen variants in red color were significant according to the global heterogeneity tests (FDR <0.05), of which 14 were identified by methods accounting for tumor heterogeneity. TN, triple negative.
Figure 3.
Figure 3.
Susceptibility variants with associations in opposite direction across subtypes. The case-control odds ratios (OR) and 95% confidence intervals (95% CI) (left panel) are for associations of each of the five variants and risk for breast cancer intrinsic-like subtypes estimated from the first-stage of the two-stage polytomous regression fixed-effects model (n = 106,278 invasive cases, n = 91,477 controls). The case-case ORs 95%CI (right panel) are estimated from the second stage parameters of a fixed effect two-stage polytomous models testing for heterogeneity between the five variants and estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade, where ER, PR, HER2, and grade are mutually adjusted for each other. MAF, minor allele frequency.
Figure 4.
Figure 4.
Heatmap of candidate causal variants (CCVs) overlapping with enhancer states in primary breast subpopulations for five variants with associations in opposite direction across subtypes. Three different breast subpopulations were considered: basal cells (BC), luminal progenitor (LP) and luminal cells mature (LM). Based on a combination of H3K4me1 and H3K27ac histone modification ChiP-seq signals, putative enhancers in BC, LP, and LM were characterized as “OFF”, “PRIMED” and “ACTIVE” (Online Methods). The CCVs overlapping with enhancers were colored as red, otherwise were white.
Figure 5.
Figure 5.
Genetic correlation between the five intrinsic-like breast cancer subtypes and BRCA1 mutation carriers estimated through LD score regression. See Supplementary Table 16 for further details. Both the color and size of the circles reflect the strength of the genetic correlations.

References

    1. Michailidou K et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017). - PMC - PubMed
    1. Milne RL et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49, 1767–1778 (2017). - PMC - PubMed
    1. Garcia-Closas M et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45, 392–8, 398e1–2 (2013). - PMC - PubMed
    1. Zhang H et al. A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics. Biostatistics, Doi: 10.1093/biostatistics/kxz065 (2020). - DOI - PMC - PubMed
    1. Michailidou K et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45, 353–61, 361e1–2 (2013). - PMC - PubMed

Publication types