Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 15;26(58):13249-13255.
doi: 10.1002/chem.202001712. Epub 2020 Sep 11.

Switching the Switch: Ligand Induced Disulfide Formation in HDAC8

Affiliations

Switching the Switch: Ligand Induced Disulfide Formation in HDAC8

Niklas Jänsch et al. Chemistry. .

Abstract

Human histone deacetylase 8 is a well-recognized target for T-cell lymphoma and particularly childhood neuroblastoma. PD-404,182 was shown to be a selective covalent inhibitor of HDAC8 that forms mixed disulfides with several cysteine residues and is also able to transform thiol groups to thiocyanates. Moreover, HDAC8 was shown to be regulated by a redox switch based on the reversible formation of a disulfide bond between cysteines Cys102 and Cys153 . This study on the distinct effects of PD-404,182 on HDAC8 reveals that this compound induces the dose-dependent formation of intramolecular disulfide bridges. Therefore, the inhibition mechanism of HDAC8 by PD-404,182 involves both, covalent modification of thiols as well as ligand mediated disulfide formation. Moreover, this study provides a deep molecular insight into the regulation mechanism of HDAC8 involving several cysteines with graduated capability to form reversible disulfide bridges.

Keywords: HDAC8; covalent inhibitors; cysteine; redox switch; sulfenamides.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanism of PD‐404,182 induced disulfide formation.
Figure 2
Figure 2
Structural overview of the investigated Cysteine pairs in HDAC8 (PDB‐ID: 1T64).
Figure 3
Figure 3
Structural alignment of HDAC1, 2, 3, 4, 6, 7 and 8. Cysteines are marked in black and disulfides in HDAC8 relate to black lines. Theoretical peptide fragments are indicated with grey bars beneath the alignment. Numbers on the left and right edge indicates the amino acid numbers corresponding to following PDB IDs: HDAC1 (4BKX), HDAC2 (5IWG), HDAC3 (4A69), HDAC4 (2VQJ), HDAC6 (5W5K), HDAC7 (3C0Z), HDAC8 (1T69).
Figure 4
Figure 4
Electrophoretic mobility shift assay (EMSA) showing disulfide bond induced loss of enzyme activity. A) EMSA for the HDAC8wt, B) HDAC8C102S/C153S, C) HDAC8C102S/C153S/C275S/C352S enzyme.
Figure 5
Figure 5
HPLC‐MS/MS analysis of disulfide linked tryptic HDAC8 fragments. A) HPLC chromatogram of the untreated and PD‐404,182 treated HDAC8 samples. B) Mass spectra for the Cys125‐S‐S‐Cys131−S‐CAM, C) Cys125‐S‐S‐Cys131+Cys102‐S‐S‐Cys153, D) Cys244‐S‐S‐Cys287, E) Cys275‐S‐S‐Cys352 peptide fragment.
Figure 6
Figure 6
Thermal shift assay of HDAC8 incubated with various concentrations of PD‐404,182. The black lines show the increase of SYPRO orange fluorescence upon thermal unfolding of HDAC8. The dotted lines represent the first derivatives of thermograms. Vertical dotted lines correspond to the melting point of the untreated control sample.

Similar articles

Cited by

References

    1. Alam N., Zimmerman L., Wolfson N. A., Joseph C. G., Fierke C. A., Schueler-Furman O., Structure 2016, 24, 458–468. - PMC - PubMed
    1. Beckouët F., Hu B., Roig M. B., Sutani T., Komata M., Uluocak P., Katis V. L., Shirahige K., Nasmyth K., Mol. cell 2010, 39, 689–699. - PMC - PubMed
    1. Deardorff M. A., Bando M., Nakato R., Watrin E., Itoh T., Minamino M., Saitoh K., Komata M., Katou Y., Clark D., Cole K. E., de Baere E., Decroos C., Di Donato N., Ernst S., Francey L. J., Gyftodimou Y., Hirashima K., Hullings M., Ishikawa Y., Jaulin C., Kaur M., Kiyono T., Lombardi P. M., Magnaghi-Jaulin L., Mortier G. R., Nozaki N., Petersen M. B., Seimiya H., Siu V. M., Suzuki Y., Takagaki K., Wilde J. J., Willems P. J., Prigent C., Gillessen-Kaesbach G., Christianson D. W., Kaiser F. J., Jackson L. G., Hirota T., Krantz I. D., Shirahige K., Nature 2012, 489, 313–317. - PMC - PubMed
    1. Durst K. L., Lutterbach B., Kummalue T., Friedman A. D., Hiebert S. W., Mol. Cell. Biol. 2003, 23, 607–619. - PMC - PubMed
    1. Gao J., Siddoway B., Huang Q., Xia H., Biochem. Biophys. Res. Commun. 2009, 379, 1–5. - PMC - PubMed

LinkOut - more resources