Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;15(5):759-766.
doi: 10.1007/s11739-020-02364-6. Epub 2020 May 19.

The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies

Affiliations

The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies

Adriana Albini et al. Intern Emerg Med. 2020 Aug.

Abstract

SARS-CoV-2 is characterized by a spike protein allowing viral binding to the angiotensin-converting enzyme (ACE)-2, which acts as a viral receptor and is expressed on the surface of several pulmonary and extra-pulmonary cell types, including cardiac, renal, intestinal and endothelial cells. There is evidence that also endothelial cells are infected by SARS-COV-2, with subsequent occurrence of systemic vasculitis, thromboembolism and disseminated intravascular coagulation. Those effects, together with the "cytokine storm" are involved in a worse prognosis. In clinical practice, angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin II receptor blockers (ARBs) are extensively used for the treatment of hypertension and other cardiovascular diseases. In in vivo studies, ACE-Is and ARBs seem to paradoxically increase ACE-2 expression, which could favour SARS-CoV-2 infection of host's cells and tissues. By contrast, in patients treated with ACE-Is and ARBs, ACE-2 shows a downregulation at the mRNA and protein levels in kidney and cardiac tissues. Yet, it has been claimed that both ARBs and ACE-Is could result potentially useful in the clinical course of SARS-CoV-2-infected patients. As detected in China and as the Italian epidemiological situation confirms, the most prevalent comorbidities in deceased patients with COVID-19 are hypertension, diabetes and cardiovascular diseases. Older COVID-19-affected patients with cardiovascular comorbidities exhibit a more severe clinical course and a worse prognosis, with many of them being also treated with ARBs or ACE-Is. Another confounding factor is cigarette smoking, which has been reported to increase ACE-2 expression in both experimental models and humans. Sex also plays a role, with chromosome X harbouring the gene coding for ACE-2, which is one of the possible explanations of why mortality in female patients is lower. Viral entry also depends on TMPRSS2 protease activity, an androgen dependent enzyme. Despite the relevance of experimental animal studies, to comprehensively address the question of the potential hazards or benefits of ACE-Is and ARBs on the clinical course of COVID-19-affected patients treated by these anti-hypertensive drugs, we will need randomized human studies. We claim the need of adequately powered, prospective studies aimed at answering the following questions of paramount importance for cardiovascular, internal and emergency medicine: Do ACE-Is and ARBs exert similar or different effects on infection or disease course? Are such effects dangerous, neutral or even useful in older, COVID-19-affected patients? Do they act on multiple cell types? Since ACE-Is and ARBs have different molecular targets, the clinical course of SARS-CoV-2 infection could be also different in patients treated by one or the other of these two drug classes. At present, insufficient detailed data from trials have been made available.

Keywords: ACE-inhibitors; Angiotensin II receptor blockers; COVID-19; Cardiovascular disease; Endothelium; Thrombosis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that this “Point of view” article was written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Fig. 1
Fig. 1
ACE-2 is expressed on lung, gut, kidney epithelial cells, cardiac, endothelial cells and in testis and to lesser extent in the breast, skin and other organs
Fig. 2
Fig. 2
RAAS pathway and drugs that target ACE and ARB

Comment in

Similar articles

Cited by

References

    1. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052. - DOI - PMC - PubMed
    1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020 doi: 10.1126/science.abb2762. - DOI - PMC - PubMed
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. - DOI - PMC - PubMed
    1. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020 doi: 10.1016/j.cell.2020.03.045. - DOI - PMC - PubMed
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570. - DOI - PMC - PubMed

MeSH terms

Substances