Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul;39(11):3912-3923.
doi: 10.1080/07391102.2020.1772106. Epub 2020 Jun 8.

Homology modeling, molecular dynamics and virtual screening of endothelin-A receptor for the treatment of pulmonary arterial hypertension

Affiliations

Homology modeling, molecular dynamics and virtual screening of endothelin-A receptor for the treatment of pulmonary arterial hypertension

Xi Gu et al. J Biomol Struct Dyn. 2021 Jul.

Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease of pulmonary arteries, causing serious shortness of breath and right ventricular failure with high mortality. Numerous studies have verified that the symptoms of PAH could be attenuated effectively with endothelin-A receptor (ETAR) antagonists. Unfortunately, the 3D structure of ETAR has not been released, making it difficult to understand the interactions between ETAR and its antagonists. In this study, computational methods including homology modeling, molecular docking and molecular dynamics simulations were performed to build the structure of ETAR and predict the binding patterns of ETAR with its two antagonists. Based on these results, virtual screening study was implemented against Traditional Chinese Medicine (TCM) database to identify novel natural ETAR antagonists. Six compounds with best binding energies were screened out and two of them were found to bind steadily with ETAR validated through molecular dynamics simulations and MM-GBSA calculation, indicating that they were potential antagonists of ETAR. In a word, our research provided a deep exploration into the interaction between ETAR and its antagonists, which could promote the development of novel therapy against PAH.[Formula: see text]Communicated by Ramaswamy H. Sarma.

Keywords: ETAR; homology modeling; molecular docking; molecular dynamics simulations; virtual screening.

PubMed Disclaimer

LinkOut - more resources