Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;40(8):1917-1925.
doi: 10.1111/liv.14518. Epub 2020 Jun 8.

Functional rescue of an ABCB11 mutant by ivacaftor: A new targeted pharmacotherapy approach in bile salt export pump deficiency

Affiliations

Functional rescue of an ABCB11 mutant by ivacaftor: A new targeted pharmacotherapy approach in bile salt export pump deficiency

Elodie Mareux et al. Liver Int. 2020 Aug.

Abstract

Background & aim: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator.

Methods: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1).

Results: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor.

Conclusion: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.

Keywords: ABC transporters superfamily; PFIC2; VX-770; cholestatic liver diseases; paediatrics; potentiator.

PubMed Disclaimer

References

REFERENCES

    1. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009;4:1.
    1. Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med. 2014;37:3-14.
    1. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156-1166.
    1. Strautnieks SS, Byrne JA, Pawlikowska L, et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134(4):1203-1214.
    1. Byrne JA, Strautnieks SS, Ihrke G, et al. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology. 2009;49(2):553-567.

Publication types

LinkOut - more resources