Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 19;31(7):107663.
doi: 10.1016/j.celrep.2020.107663.

Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks

Affiliations
Free article

Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks

Vikram Agarwal et al. Cell Rep. .
Free article

Abstract

Algorithms that accurately predict gene structure from primary sequence alone were transformative for annotating the human genome. Can we also predict the expression levels of genes based solely on genome sequence? Here, we sought to apply deep convolutional neural networks toward that goal. Surprisingly, a model that includes only promoter sequences and features associated with mRNA stability explains 59% and 71% of variation in steady-state mRNA levels in human and mouse, respectively. This model, termed Xpresso, more than doubles the accuracy of alternative sequence-based models and isolates rules as predictive as models relying on chromatic immunoprecipitation sequencing (ChIP-seq) data. Xpresso recapitulates genome-wide patterns of transcriptional activity, and its residuals can be used to quantify the influence of enhancers, heterochromatic domains, and microRNAs. Model interpretation reveals that promoter-proximal CpG dinucleotides strongly predict transcriptional activity. Looking forward, we propose cell-type-specific gene-expression predictions based solely on primary sequences as a grand challenge for the field.

Keywords: deep learning; gene regulation; predicting gene expression.

PubMed Disclaimer

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

Comment in

Publication types