Harmonization of Brain Diffusion MRI: Concepts and Methods
- PMID: 32435181
- PMCID: PMC7218137
- DOI: 10.3389/fnins.2020.00396
Harmonization of Brain Diffusion MRI: Concepts and Methods
Abstract
MRI diffusion data suffers from significant inter- and intra-site variability, which hinders multi-site and/or longitudinal diffusion studies. This variability may arise from a range of factors, such as hardware, reconstruction algorithms and acquisition settings. To allow a reliable comparison and joint analysis of diffusion data across sites and over time, there is a clear need for robust data harmonization methods. This review article provides a comprehensive overview of diffusion data harmonization concepts and methods, and their limitations. Overall, the methods for the harmonization of multi-site diffusion images can be categorized in two main groups: diffusion parametric map harmonization (DPMH) and diffusion weighted image harmonization (DWIH). Whereas DPMH harmonizes the diffusion parametric maps (e.g., FA, MD, and MK), DWIH harmonizes the diffusion-weighted images. Defining a gold standard harmonization technique for dMRI data is still an ongoing challenge. Nevertheless, in this paper we provide two classification tools, namely a feature table and a flowchart, which aim to guide the readers in selecting an appropriate harmonization method for their study.
Keywords: diffusion MRI; harmonization; inter-scanner; multi-site; normalization; review.
Copyright © 2020 Pinto, Paolella, Billiet, Van Dyck, Guns, Jeurissen, Ribbens, den Dekker and Sijbers.
Figures






Similar articles
-
Inter-site and inter-scanner diffusion MRI data harmonization.Neuroimage. 2016 Jul 15;135:311-23. doi: 10.1016/j.neuroimage.2016.04.041. Epub 2016 Apr 30. Neuroimage. 2016. PMID: 27138209 Free PMC article.
-
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.Neuroimage. 2020 Nov 1;221:117128. doi: 10.1016/j.neuroimage.2020.117128. Epub 2020 Jul 13. Neuroimage. 2020. PMID: 32673745 Free PMC article.
-
Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters.Neuroimage. 2019 Jan 1;184:180-200. doi: 10.1016/j.neuroimage.2018.08.073. Epub 2018 Sep 8. Neuroimage. 2019. PMID: 30205206 Free PMC article.
-
Harmonization Strategies in Multicenter MRI-Based Radiomics.J Imaging. 2022 Nov 7;8(11):303. doi: 10.3390/jimaging8110303. J Imaging. 2022. PMID: 36354876 Free PMC article. Review.
-
Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations.Front Neurol. 2023 Jan 4;13:1045678. doi: 10.3389/fneur.2022.1045678. eCollection 2022. Front Neurol. 2023. PMID: 36686533 Free PMC article. Review.
Cited by
-
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2. IEEE Trans Med Imaging. 2023. PMID: 36318557 Free PMC article.
-
Evaluation of Mean Shift, ComBat, and CycleGAN for Harmonizing Brain Connectivity Matrices Across Sites.ArXiv [Preprint]. 2024 Jan 24:arXiv:2401.06798v2. ArXiv. 2024. Update in: Proc SPIE Int Soc Opt Eng. 2024 Feb;12926:129261X. doi: 10.1117/12.3005563. PMID: 38344221 Free PMC article. Updated. Preprint.
-
Translational network neuroscience: Nine roadblocks and possible solutions.Netw Neurosci. 2025 Mar 20;9(1):352-370. doi: 10.1162/netn_a_00435. eCollection 2025. Netw Neurosci. 2025. PMID: 40161983 Free PMC article.
-
Autism-associated brain differences can be observed in utero using MRI.Cereb Cortex. 2024 Apr 1;34(4):bhae117. doi: 10.1093/cercor/bhae117. Cereb Cortex. 2024. PMID: 38602735 Free PMC article.
-
Bundle-specific tractography approach for identifying white matter microstructural changes following traumatic brain injury in rats: An EpiBioS4Rx study.Imaging Neurosci (Camb). 2025 Feb 18;3:imag_a_00471. doi: 10.1162/imag_a_00471. eCollection 2025. Imaging Neurosci (Camb). 2025. PMID: 40800940 Free PMC article.
References
-
- Button K. S., Ioannidis J. P. A., Mokrysz C., Nosek B. A., Flint J., Robinson E. S. J., et al. (2013). “Power failure: why small sample size undermines the reliability of neuroscience”: Erratum. Nat. Rev. Neurosci. 14:442. - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources