Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46
- PMID: 32439988
- DOI: 10.1038/s41429-020-0318-1
Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46
Abstract
In the search for new antibiotic compounds, fractionation of Pseudomonas protegens UP46 culture extracts afforded several known Pseudomonas compounds, including 2,4-diacetylphloroglucinol (DAPG), as well as two new antibacterial alkaloids, 6-(pyrrolidin-2-yl)DAPG (1) and 6-(piperidin-2-yl)DAPG (2). The structures of 1 and 2 were determined by nuclear magnetic resonance spectroscopy and mass spectrometry. Compounds 1 and 2 were found to have antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus, with minimal inhibitory concentration (MIC) 2 and 4 μg ml-1, respectively, for 1, and 2 μg ml-1 for both pathogens for 2. The MICs for 1 and 2, against all tested Gram-negative bacteria, were >32 μg ml-1. The half maximal inhibitory concentrations against HepG2 cells for compounds 1 and 2 were 11 and 18 μg ml-1, respectively, which suggested 1 and 2 be too toxic for further evaluation as possible new antibacterial drugs. Stable isotope labelling experiments showed the pyrrolidinyl group of 1 to originate from ornithine and the piperidinyl group of 2 to originate from lysine. The P. protegens acetyl transferase (PpATase) is involved in the biosynthesis of monoacetylphloroglucinol and DAPG. No optical rotation was detected for 1 or 2, and a possible reason for this was investigated by studying if the PpATase may catalyse a stereo-non-specific introduction of the pyrrolidinyl/piperidinyl group in 1 and 2, but unless the PpATase can be subjected to major conformational changes, the enzyme cannot be involved in this reaction. The PpATase is, however, likely to catalyse the formation of 2,4,6-triacetylphloroglucinol from DAPG.
References
-
- Theuretzbacher U, Gottwalt S, Beyer P, Butler M, Czaplewski L, Lienhardt C, et al. Analysis of the clinical antibacterial and antituberculosis pipeline. Lancet Infect Dis. 2019;19:E40–E50. - PubMed
-
- Walsh UF, Morrissey JP, O’Gara F. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol. 2001;12:289–95. - PubMed
-
- Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 2009;26:1408–46. - PubMed
-
- Maurhofer M, Keel C, Haas D, Défago G. Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol. 1994;100:221–32.
-
- Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, Suzui T. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne pathogens. Soil Biol Biochem. 1989;21:723–28.
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical
