Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun;55(3):274-308.
doi: 10.1080/10409238.2020.1768209. Epub 2020 May 22.

Substrate specificity of polyphenol oxidase

Affiliations
Review

Substrate specificity of polyphenol oxidase

Mark-Anthony McLarin et al. Crit Rev Biochem Mol Biol. 2020 Jun.

Abstract

The ubiquitous type-3 copper enzyme polyphenol oxidase (PPO) has found itself the subject of profound inhibitor research due to its role in fruit and vegetable browning and mammalian pigmentation. The enzyme itself has also been applied in the fields of bioremediation, biocatalysis and biosensing. However, the nature of PPO substrate specificity has remained elusive despite years of study. Numerous theories have been proposed to account for the difference in tyrosinase and catechol oxidase activity. The "blocker residue" theory suggests that bulky residues near the active site cover CuA, preventing monophenol coordination. The "second shell" theory suggests that residues distant (∼8 Å) from the active site, guide and position substrates within the active site based on their properties e.g., hydrophobic, electrostatic. It is also hypothesized that binding specificity is related to oxidation mechanisms of the catalytic cycle, conferred by coordination of a conserved water molecule by other conserved residues. In this review, we highlight recent developments in the structural and mechanistic studies of PPOs and consolidate key concepts in our understanding toward the substrate specificity of PPOs.

Keywords: Catechol oxidase; Polyphenol oxidase; Tyrosinase; enzyme mechanism; substrate specificity.

PubMed Disclaimer

LinkOut - more resources