Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug:128:216-233.
doi: 10.1016/j.neunet.2020.05.002. Epub 2020 May 19.

T-Net: Nested encoder-decoder architecture for the main vessel segmentation in coronary angiography

Affiliations

T-Net: Nested encoder-decoder architecture for the main vessel segmentation in coronary angiography

Tae Joon Jun et al. Neural Netw. 2020 Aug.

Abstract

In this paper, we proposed nested encoder-decoder architecture named T-Net. T-Net consists of several small encoder-decoders for each block constituting convolutional network. T-Net overcomes the limitation that U-Net can only have a single set of the concatenate layer between encoder and decoder block. To be more precise, the U-Net symmetrically forms the concatenate layers, so the low-level feature of the encoder is connected to the latter part of the decoder, and the high-level feature is connected to the beginning of the decoder. T-Net arranges the pooling and up-sampling appropriately during the encoding process, and likewise during the decoding process so that feature-maps of various sizes are obtained in a single block. As a result, all features from the low-level to the high-level extracted from the encoder are delivered from the beginning of the decoder to predict a more accurate mask. We evaluated T-Net for the problem of segmenting three main vessels in coronary angiography images. The experiment consisted of a comparison of U-Net and T-Nets under the same conditions, and an optimized T-Net for the main vessel segmentation. As a result, T-Net recorded a Dice Similarity Coefficient score (DSC) of 83.77%, 10.69% higher than that of U-Net, and the optimized T-Net recorded a DSC of 88.97% which was 15.89% higher than that of U-Net. In addition, we visualized the weight activation of the convolutional layer of T-Net and U-Net to show that T-Net actually predicts the mask from earlier decoders. Therefore, we expect that T-Net can be effectively applied to other similar medical image segmentation problems.

Keywords: Convolutional neural network; Coronary angiography; Encoder and decoder; Main vessel segmentation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources