Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 24;11(1):198.
doi: 10.1186/s13287-020-01723-6.

Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway

Affiliations

Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway

Tiechao Jiang et al. Stem Cell Res Ther. .

Abstract

Background: Cutaneous wound healing represents a morphogenetic response to injury and is designed to restore anatomic and physiological function. Human bone marrow mesenchymal stem cell-derived exosomes (hBM-MSC-Ex) are a promising source for cell-free therapy and skin regeneration.

Methods: In this study, we investigated the cell regeneration effects and its underlying mechanism of hBM-MSC-Ex on cutaneous wound healing in rats. In vitro studies, we evaluated the role of hBM-MSC-Ex in the two types of skin cells: human keratinocytes (HaCaT) and human dermal fibroblasts (HDFs) for the proliferation. For in vivo studies, we used a full-thickness skin wound model to evaluate the effects of hBM-MSC-Ex on cutaneous wound healing in vivo.

Results: The results demonstrated that hBM-MSC-Ex promote both two types of skin cells' growth effectively and accelerate the cutaneous wound healing. Interestingly, we found that hBM-MSC-Ex significantly downregulated TGF-β1, Smad2, Smad3, and Smad4 expression, while upregulated TGF-β3 and Smad7 expression in the TGF-β/Smad signaling pathway.

Conclusions: Our findings indicated that hBM-MSC-Ex effectively promote the cutaneous wound healing through inhibiting the TGF-β/Smad signal pathway. The current results provided a new sight for the therapeutic strategy for the treatment of cutaneous wounds.

Keywords: Exosomes; Human bone marrow mesenchymal stem cells; TGF-β/Smad signaling; Wound healing.

PubMed Disclaimer

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Fig. 1
Fig. 1
hBM-MSC-Ex promotes proliferation in HaCaT and HDF skin cells. The cell proliferation curve were shown from respective HaCaT and HDF skin cells after treated with hBM-MSC-Ex (a, b). Immunofluorescent staining was performed in HaCaT and HDFs for PCNA-positive cells, and representative images were shown (c). The quantification of PCNA-positive cells (in percentages) in HaCaT and HDFs were determined (d). HaCaT, human keratinocytes; HDFs, human dermal fibroblasts; bar = 100 μm, *p < 0.05, **p < 0.01, n = 3; data are reported as mean ± SD
Fig. 2
Fig. 2
hBM-MSC-Ex treatments accelerate cutaneous wound healing process in vivo. The illustration of experimental design and plan of experiment performed in vivo (a). The representative photos shown in the dorsal full-thickness wound area of the rat (b). Quantitative analysis of wound area in the respective treatment groups (c). n = 8/group, scale bar = 5 mm, *p < 0.05, **p < 0.01 compared to the PBS group, ##p < 0.01 compared to the hBM-MSC group; data are reported as mean ± SD
Fig. 3
Fig. 3
hBM-MSC-Ex enhanced the cutaneous wound healing quality. The representative images of H&E staining in the different treatment groups (a). The image quantification of number of cutaneous appendages including hair follicles and sebaceous glands/field (40×) in the healing tissue (b). The blue arrow indicates the presence of sebaceous gland. Immunostaining for α-SMA and VEGF were shown respective images at 16 days after treatment (a). The percentage quantification of α-SMA and VEGF positive area (c, d). The purple arrow indicates the α-SMA-positive cells, and red arrow indicates VEGF positive cells. Scale bar = 1 mm, *p < 0.05, **p < 0.01, ***p < 0.001, n = 8/group, data are reported as mean ± SD
Fig. 4
Fig. 4
hBM-MSC-Ex regulate the TGF-β/Smad signal pathway. Representative Western blot of key TGF-β/Smad signaling-related protein levels in skin tissue treated with hBM-MSC-Ex (a). The quantification of relative mRNA expression levels of major TGF-β/Smad signaling-related gene in skin healed tissue treated with hBM-MSC-Ex (b). *p < 0.05, **p < 0.01, n = 3, data are reported as mean ± SD
Fig. 5
Fig. 5
Illustration of hBM-MSC-Ex stimulates cutaneous wound healing by regulating the TGF-β/Smad signal pathway. hBM-MSC-Ex inhibited TGF-β1 and activated TGF-β3 expression; TGF-β isoforms and activins stimulate intracellular signaling via Smad-2/3 transcription factors; phosphorylated Smad-2 and Smad-3 bind to Smad-4 leading to the transcription and expression of α-SMA; inhibitory Smad7 are activated by the binding of the TGF-β super family to the cell surface receptors

Similar articles

Cited by

References

    1. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–746. - PubMed
    1. McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, Li Y, Chopp M, Dulchavsky SA, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen. 2006;14(4):471–478. - PubMed
    1. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24. - PubMed
    1. Francois S, Mouiseddine M, Mathieu N, Semont A, Monti P, Dudoignon N, Sache A, Boutarfa A, Thierry D, Gourmelon P, et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol. 2007;86(1):1–8. - PubMed
    1. Wang X, Jiao Y, Pan Y, Zhang L, Gong H, Qi Y, Wang M, Gong H, Shao M, Wang X, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;2019:2402916. - PMC - PubMed

Publication types

Substances

LinkOut - more resources