Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;6(6):638-645.
doi: 10.1038/s41477-020-0663-x. Epub 2020 May 25.

CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis

Affiliations

CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis

Natalja Beying et al. Nat Plants. 2020 Jun.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has been applied in plant breeding mainly on genes for improving single or multiple traits1-4. Here we show that this technology can also be used to restructure plant chromosomes. Using the Cas9 nuclease from Staphylococcus aureus5, we were able to induce reciprocal translocations in the Mbp range between heterologous chromosomes in Arabidopsis thaliana. Of note, translocation frequency was about five times more efficient in the absence of the classical non-homologous end-joining pathway. Using egg-cell-specific expression of the Cas9 nuclease and consecutive bulk screening, we were able to isolate heritable events and establish lines homozygous for the translocation, reaching frequencies up to 2.5% for individual lines. Using molecular and cytological analysis, we confirmed that the chromosome-arm exchanges we obtained between chromosomes 1 and 2 and between chromosomes 1 and 5 of Arabidopsis were conservative and reciprocal. The induction of chromosomal translocations enables mimicking of genome evolution or modification of chromosomes in a directed manner, fixing or breaking genetic linkages between traits on different chromosomes. Controlled restructuring of plant genomes has the potential to transform plant breeding.

PubMed Disclaimer

Comment in

References

    1. Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018). - DOI
    1. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019). - DOI
    1. Schindele, A., Dorn, A. & Puchta, H. CRISPR/Cas brings plant biology and breeding into the fast lane. Curr. Opin. Biotechnol. 61, 7–14 (2020). - DOI
    1. Hua, K. et al. Perspectives on the application of genome-editing technologies in crop breeding. Mol. Plant 12, 1047–1059 (2019). - DOI
    1. Steinert, J., Schiml, S., Fauser, F. & Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84, 1295–1305 (2015). - DOI

LinkOut - more resources