Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov 15;175(1):231-7.
doi: 10.1016/0003-2697(88)90383-1.

Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation

Affiliations

Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation

K J Wiechelman et al. Anal Biochem. .

Abstract

The colored complex formed between Cu+ and bicinchoninic acid is the basis of the bicinchoninic acid protein assay (P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B.J. Olson, and D.C. Klenk (1985) Anal. Biochem. 150, 76-85). Studies show that cysteine, tryptophan, tyrosine, and the peptide bond are capable of reducing Cu2+ to Cu+. Electrochemical studies and the magnitude of the color changes observed when the reaction is carried out at 37 degrees C indicate that tryptophan, tyrosine, and the peptide bond are not completely oxidized at this temperature. When the reaction temperature is increased to 60 degrees C, significantly more color formation is observed for these three groups. Studies with di-, tri-, and tetrapeptides and with proteins indicate that the extent of color formation is not the sum of the contributions of the individual color producing functional groups. Compounds with functional groups similar to those of cysteine, cystine, tyrosine, or tryptophan are shown to react with the bicinchoninic acid reagent. The color formed by these compounds in the presence of bovine serum albumin cannot be compensated for by using a reagent blank containing an identical concentration of the interfering compound.

PubMed Disclaimer

LinkOut - more resources