Quantitative analysis of intervertebral disc degeneration using Q-space imaging in a rat model
- PMID: 32458477
- DOI: 10.1002/jor.24757
Quantitative analysis of intervertebral disc degeneration using Q-space imaging in a rat model
Abstract
The degree of intervertebral disc (IVD) degeneration is qualitatively evaluated on T2-weighted imaging (T2WI). However, it is difficult to assess subtle changes in IVD degeneration using T2WI. Q-space imaging (QSI) is a quantitative diffusion-weighted imaging modality used to detect subtle changes in microenvironments. This study aimed to evaluate whether QSI can detect the inhibitory effects of the antioxidant N-acetylcysteine (NAC) in IVD degeneration. We classified female Wistar rats into control, puncture, and NAC groups (n = 5 per group). In the puncture and NAC groups, IVDs were punctured using a needle. The antioxidant NAC, which suppresses the progression of IVD degeneration, was orally administered in the NAC group 1 week prior to puncture. The progression and inhibitory effect of NAC in IVD degeneration were assessed using magnetic resonance imaging (MRI): IVD height, T2 mapping, apparent diffusion coefficient (ADC), and QSI. MRI was performed using a 7-Tesla system with a conventional probe (20 IVDs in each group). QSI parameters that were assessed included Kurtosis, the probability at zero displacement (ZDP), and full width at half maximum (FWHM). IVD degeneration by puncture was confirmed by histology, IVD height, T2 mapping, ADC, and all QSI parameters (P < .001); however, the inhibitory effect of NAC was confirmed only by QSI parameters (Kurtosis and ZDP: both P < .001; FWHM: P < .01). Kurtosis had the largest effect size (Kurtosis: 1.13, ZDP: 1.06, and FWHM: 1.02) when puncture and NAC groups were compared. QSI has a higher sensitivity than conventional quantitative methods for detecting the progressive change and inhibitory effect of NAC in IVD degeneration.
Keywords: N-acetylcysteine; intervertebral disc degeneration; q-space imaging; regenerative medicine.
© 2020 Orthopaedic Research Society. Published by Wiley Periodicals LLC.
References
REFERENCES
-
- Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5:120-130.
-
- Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006;88(suppl 2):21-24.
-
- Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873-1878.
-
- Yamabe D, Murakami H, Chokan K, et al. Evaluation of water content in lumbar intervertebral discs and facet joints before and after physiological loading using T2 mapping MRI. Spine. 2017;42:E1423-E1428.
-
- Wu N, Liu H, Chen J, et al. Comparison of apparent diffusion coefficient and T2 relaxation time variation patterns in assessment of age and disc level related intervertebral disc changes. PLoS One. 2013;8:e69052.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources