Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;85(6):1689-1698.
doi: 10.1111/1750-3841.15165. Epub 2020 May 26.

Characterization of β-glucan gum for food applications as influenced by genotypic variations in three hulless barley varieties

Affiliations

Characterization of β-glucan gum for food applications as influenced by genotypic variations in three hulless barley varieties

Amal Mahmoud Hassan Abdel-Haleem et al. J Food Sci. 2020 Jun.

Abstract

Three hulless barley varieties were grown under normal conditions during 2017/2018 and 2018/2019, to improve their agronomic yield, and to assess how the genotype influences β-glucan contents, and its structural, thermal, rheological, and functional properties, as intended to be used in food applications. The extracted gums with hot water at 55 °C and pH 8.0, showed contents from 5.75% to 6.41% (w/w), and concentrations from 68.55% to 79.29% of β-glucan, with some starch and protein impurities. The results of the agronomic trail indicated the highly significant (P ≤ 0.01) influence of the genotype on all studied characteristics, and on the β-glucan contents (0.28** and 0.33** ) at both seasons. The morphology of the three gums was significantly different in the distribution and structure of networks. Peak intensities of the -OH and -CH groups and CH2 stretching were higher and wider in Giza129 and Giza131. β-Glucan networks melt from 71.5 to 87.18 °C, and Giza131 exhibited the highest thermal stability. The aqueous dispersions (1%) of β-glucan gums exhibited a non-Newtonian behavior, and Giza130 presented the highest significant (P ≤ 0.05) apparent viscosity (η) and foaming stability. Giza129 showed the highest significant water and fat binding capacities, whereas Giza131 showed the highest significant foaming capacity. β-Glucan gums showed different potentials in food applications as fat replacers, stabilizers, thickeners, and foaming agents in food systems. This study suggests planting the proper barley variety in breeding and genetic improvement programs to supply the food industry with the expected β-glucan content with consistent structural, thermal, rheological, and functional properties. PRACTICAL APPLICATION: β-Glucans play an important technological role in processed foods. Little current information is available on β-glucan contents, and its potentiality on food applications, as influenced by variability among hulless barley genotypes. Accordingly, knowledge of β-glucan levels in barley varieties is a valuable attribute for both consumers and food processors, and it will create an opportunity for scientific cooperation between food technologist and breeders to identify the suitable barley varieties to be used in breeding programs, to obtain barley with required β-glucan contents, targeted for specific end uses.

Keywords: barley β-glucan; genotypic factor; rheological and functional properties; structural characterization; thermal.

PubMed Disclaimer

References

    1. AACC International. (2003). Approved methods of analysis of the American Association of Cereal Chemists International (11th ed.). St. Paul, MN: Author.
    1. Abdel-Haleem, A. M., & Awad, R. A. (2015). Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan. Journal of Food Science and Technology, 52(10), 6425-6434.
    1. Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extraction and characterization of β-d-glucan from oat for industrial utilization. International Journal of Biological Macromolecules, 46(3), 304-309.
    1. Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. International Journal of Food Science & Technology, 44(1), 181-187.
    1. Bae, I. Y., Lee, S., Kim, S. M., & Lee, H. G. (2009). Effect of partially hydrolyzed oat β-glucan on the weight gain and lipid profile of mice. Food Hydrocolloids, 23(7), 2016-2021.

Publication types

LinkOut - more resources