Characterization of PfiT/PfiA toxin-antitoxin system of Pseudomonas aeruginosa that affects cell elongation and prophage induction
- PMID: 32458560
- DOI: 10.1111/1462-2920.15102
Characterization of PfiT/PfiA toxin-antitoxin system of Pseudomonas aeruginosa that affects cell elongation and prophage induction
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually consisting of two elements-a toxin and an antitoxin. The abundance of TA systems among various bacterial strains may indicate an important evolutionary role. Pseudomonas aeruginosa, which can be found in a variety of niches in nature, is an opportunistic pathogen for various hosts. While P. aeruginosa strains are very versatile and diverse, only a few TA systems were characterized in this species. Here, we describe a newly characterized TA system in P. aeruginosa that is encoded within the filamentous Pf4 prophage. This system, named PfiT/PfiA, is a homologue of the ParE/YefM TA system. It is a type II TA system, in which the antitoxin is a protein that binds the toxic protein and eliminates the toxic effect. PfiT/PfiA carries several typical type II characteristics. Specifically, it constitutes two small genes expressed in a single operon, PfiT inhibits growth and PfiA eliminates this effect, PfiA binds PfiT, and PfiT expression results in elongated cells. Finally, we assigned a novel function to this TA system, where an imbalance between PfiT and PfiA, favouring the toxin, resulted in cell elongation and an increase in virion production.
© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.
Similar articles
-
Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa.Toxins (Basel). 2023 Feb 17;15(2):164. doi: 10.3390/toxins15020164. Toxins (Basel). 2023. PMID: 36828478 Free PMC article. Review.
-
Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa.Microb Biotechnol. 2020 Jul;13(4):1132-1144. doi: 10.1111/1751-7915.13570. Epub 2020 Apr 4. Microb Biotechnol. 2020. PMID: 32246813 Free PMC article.
-
PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation.Microbiol Spectr. 2022 Jun 29;10(3):e0118222. doi: 10.1128/spectrum.01182-22. Epub 2022 May 16. Microbiol Spectr. 2022. PMID: 35575497 Free PMC article.
-
Plasmid pUM505 encodes a Toxin-Antitoxin system conferring plasmid stability and increased Pseudomonas aeruginosa virulence.Microb Pathog. 2017 Nov;112:259-268. doi: 10.1016/j.micpath.2017.09.060. Epub 2017 Sep 29. Microb Pathog. 2017. PMID: 28970172
-
Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity.Plasmid. 2017 Sep;93:30-35. doi: 10.1016/j.plasmid.2017.08.005. Epub 2017 Sep 20. Plasmid. 2017. PMID: 28941941 Review.
Cited by
-
An Efficient, Counter-Selection-Based Method for Prophage Curing in Pseudomonas aeruginosa Strains.Viruses. 2021 Feb 21;13(2):336. doi: 10.3390/v13020336. Viruses. 2021. PMID: 33670076 Free PMC article.
-
Identification and characterization of a novel type II toxin-antitoxin system in Aeromonas veronii.Arch Microbiol. 2024 Aug 17;206(9):381. doi: 10.1007/s00203-024-04101-5. Arch Microbiol. 2024. PMID: 39153128
-
Highly sensitive extraction-free saliva-based molecular assay for rapid diagnosis of SARS-CoV-2.J Clin Microbiol. 2024 Jun 12;62(6):e0060024. doi: 10.1128/jcm.00600-24. Epub 2024 May 24. J Clin Microbiol. 2024. PMID: 38785448 Free PMC article.
-
Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa.Toxins (Basel). 2023 Feb 17;15(2):164. doi: 10.3390/toxins15020164. Toxins (Basel). 2023. PMID: 36828478 Free PMC article. Review.
-
Bioinformatic exploration reveals features of tenpIN family of type III toxin-antitoxin systems in bacteria and viruses.Sci Rep. 2025 Jul 22;15(1):26624. doi: 10.1038/s41598-025-04853-0. Sci Rep. 2025. PMID: 40695854 Free PMC article.
References
-
- Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
-
- Andersen, S.B., Ghoul, M., Griffin, A.S., Petersen, B., Johansen, H.K., and Molin, S. (2017) Diversity, prevalence, and longitudinal occurrence of type II toxin-antitoxin systems of Pseudomonas aeruginosa infecting cystic fibrosis lungs. Front Microbiol 8: 1-12.
-
- Bearson, B.L., and Brunelle, B.W. (2015) Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella. Int J Antimicrob Agents 46: 201-204.
-
- Ben-David, Y., Zlotnik, E., Zander, I., Yerushalmi, G., Shoshani, S., and Banin, E. (2018) SawR a new regulator controlling pyomelanin synthesis in Pseudomonas aeruginosa. Microbiol Res 206: 91-98.
-
- Bernard, P., Kézdy, K.E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M., et al. (1993) The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol 234: 534-541.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous