Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;103(1):238-248.
doi: 10.4269/ajtmh.19-0642. Epub 2020 May 21.

Risk Factors for Scrub Typhus, Murine Typhus, and Spotted Fever Seropositivity in Urban Areas, Rural Plains, and Peri-Forest Hill Villages in South India: A Cross-Sectional Study

Affiliations

Risk Factors for Scrub Typhus, Murine Typhus, and Spotted Fever Seropositivity in Urban Areas, Rural Plains, and Peri-Forest Hill Villages in South India: A Cross-Sectional Study

Carol S Devamani et al. Am J Trop Med Hyg. 2020 Jul.

Abstract

Scrub typhus and spotted fever group rickettsioses are thought to be common causes of febrile illness in India, whereas they rarely test for murine typhus. This cross-sectional study explored the risk factors associated with scrub typhus, tick-borne spotted fever, and murine typhus seropositivity in three different geographical settings, urban, rural, and hill villages in Tamil Nadu, South India. We enrolled 1,353 participants living in 48 clusters. The study included a questionnaire survey and blood sampling. Blood was tested for Orientia tsutsugamushi (scrub typhus), Rickettsia typhi (murine typhus), and spotted fever group Rickettsia IgG using ELISA. The seroprevalence of scrub typhus, spotted fever, and murine typhus were 20.4%, 10.4%, and 5.4%, respectively. Scrub typhus had the highest prevalence in rural areas (28.1%), and spotted fever was most common in peri-forested areas (14.9%). Murine typhus was more common in rural (8.7%) than urban areas (5.4%) and absent in peri-forested hill areas. Agricultural workers had a higher relative risk for scrub typhus, especially in urban areas. For murine typhus, proximity to a waterbody and owning a dog were found to be major risk factors. The main risk factors for spotted fever were agricultural work and living in proximity to a forest. Urban, rural plains, and hill settings display distinct epidemiological pattern of Orientia and rickettsial infections. Although scrub typhus and spotted fever were associated with known risk factors in this study, the findings suggest a different ecology of murine typhus transmission compared with other studies conducted in Asia.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Study area. This figure appears in color at www.ajtmh.org.
Figure 2.
Figure 2.
ELISA optical densities.
Figure 3.
Figure 3.
(A) Association between distance to the nearest lake or pond and murine typhus seroprevalence (excluding hill villages). (B) Association between distance to forest and spotted fever seroprevalence (excluding urban areas).

Similar articles

Cited by

References

    1. Tamura A, Ohashi N, Urakami H, Miyamura S, 1995. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45: 589–591. - PubMed
    1. Paris DH, Shelite TR, Day NP, Walker DH, 2013. Unresolved problems related to scrub typhus: a seriously neglected life-threatening disease. Am J Trop Med Hyg 89: 301–307. - PMC - PubMed
    1. Parola P, et al. 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26: 657–702. - PMC - PubMed
    1. Nogueras MM, Pons I, Pla J, Ortuño A, Miret J, Sanfeliu I, Segura F, 2013. The role of dogs in the eco-epidemiology of Rickettsia typhi, etiological agent of murine typhus. Vet Microbiol 163: 97–102. - PubMed
    1. Azad AF, 1990. Epidemiology of murine typhus. Annu Rev Entomol 35: 553–569. - PubMed

MeSH terms