Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 May 28;15(1):128.
doi: 10.1186/s13014-020-01522-6.

A multi-center analysis of single-fraction versus hypofractionated stereotactic radiosurgery for the treatment of brain metastasis

Affiliations
Comparative Study

A multi-center analysis of single-fraction versus hypofractionated stereotactic radiosurgery for the treatment of brain metastasis

Jill S Remick et al. Radiat Oncol. .

Abstract

Background: Hypofractionated-SRS (HF-SRS) may allow for improved local control and a reduced risk of radiation necrosis compared to single-fraction-SRS (SF-SRS). However, data comparing these two treatment approaches are limited. The purpose of this study was to compare clinical outcomes between SF-SRS versus HF-SRS across our multi-center academic network.

Methods: Patients treated with SF-SRS or HF-SRS for brain metastasis from 2013 to 2018 across 5 radiation oncology centers were retrospectively reviewed. SF-SRS dosing was standardized, whereas HF-SRS dosing regimens were variable. The co-primary endpoints of local control and radiation necrosis were estimated using the Kaplan Meier method. Multivariate analysis using Cox proportional hazards modeling was performed to evaluate the impact of select independent variables on the outcomes of interest. Propensity score adjustments were used to reduce the effects confounding variables. To assess dose response for HF-SRS, Biologic Effective Dose (BED) assuming an α/β of 10 (BED10) was used as a surrogate for total dose.

Results: One-hundred and fifty six patients with 335 brain metastasis treated with SF-SRS (n = 222 lesions) or HF-SRS (n = 113 lesions) were included. Prior whole brain radiation was given in 33% (n = 74) and 34% (n = 38) of lesions treated with SF-SRS and HF-SRS, respectively (p = 0.30). After a median follow up time of 12 months in each cohort, the adjusted 1-year rate of local control and incidence of radiation necrosis was 91% (95% CI 86-96%) and 85% (95% CI 75-95%) (p = 0.26) and 10% (95% CI 5-15%) and 7% (95% CI 0.1-14%) (p = 0.73) for SF-SRS and HF-SRS, respectively. For lesions > 2 cm, the adjusted 1 year local control was 97% (95% CI 84-100%) for SF-SRS and 64% (95% CI 43-85%) for HF-SRS (p = 0.06). On multivariate analysis, SRS fractionation was not associated with local control and only size ≤2 cm was associated with a decreased risk of developing radiation necrosis (HR 0.21; 95% CI 0.07-0.58, p < 0.01). For HF-SRS, 1 year local control was 100% for lesions treated with a BED10 ≥ 50 compared to 77% (95% CI 65-88%) for lesions that received a BED10 < 50 (p = 0.09).

Conclusions: In this comparison study of dose fractionation for the treatment of brain metastases, there was no difference in local control or radiation necrosis between HF-SRS and SF-SRS. For HF-SRS, a BED10 ≥ 50 may improve local control.

Keywords: Biologic effective dose; Brain metastasis; GammaKnife; Hypofractionated stereotactic radiosurgery; Normal tissue injury; Stereotactic radiosurgery.

PubMed Disclaimer

Conflict of interest statement

Dr. Mishra reports receiving personal fees from Varian, outside of the scope of the current manuscript.

Figures

Fig. 1
Fig. 1
Kaplan Meier curves with propensity score adjustment showing (a) local control for the entire cohort, (b) local control for lesions > 2 cm and (c) radiation necrosis-free survival. SF-SRS (red/dotted) and HF-SRS (blue/solid)
Fig. 2
Fig. 2
Kaplan Meier curve of local control for lesions treated with HF-SRS. BED10 < 50 (blue/solid) and BED10 ≥ 50 (red/dotted)

Similar articles

Cited by

References

    1. Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. J Am Med Assoc. 1998;280:1485–1489. - PubMed
    1. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys. 2000;47:291–298. - PubMed
    1. Kocher M, Soffietti R, Abacioglu U, Villà S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29:134–141. - PMC - PubMed
    1. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–1044. - PubMed
    1. Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. J Am Med Assoc. 2006;295:2483–2491. - PubMed

MeSH terms