Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 16;69(3):379-388.
doi: 10.33549/physiolres.934492. Epub 2020 May 29.

COVID-19 and the immune system

Affiliations
Review

COVID-19 and the immune system

J Paces et al. Physiol Res. .

Abstract

A close interaction between the virus SARS-CoV-2 and the immune system of an individual results in a diverse clinical manifestation of the COVID-19 disease. While adaptive immune responses are essential for SARS-CoV-2 virus clearance, the innate immune cells, such as macrophages, may contribute, in some cases, to the disease progression. Macrophages have shown a significant production of IL-6, suggesting they may contribute to the excessive inflammation in COVID-19 disease. Macrophage Activation Syndrome may further explain the high serum levels of CRP, which are normally lacking in viral infections. In adaptive immune responses, it has been revealed that cytotoxic CD8+ T cells exhibit functional exhaustion patterns, such as the expression of NKG2A, PD-1, and TIM-3. Since SARS-CoV-2 restrains antigen presentation by downregulating MHC class I and II molecules and, therefore, inhibits the T cell-mediated immune responses, humoral immune responses also play a substantial role. Specific IgA response appears to be stronger and more persistent than the IgM response. Moreover, IgM and IgG antibodies show similar dynamics in COVID-19 disease.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

There is no conflict of interest.

References

    1. BARTON LM, DUVAL EJ, STROBERG E, GHOSH S, MUKHOPADHYAY S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153:725–733. doi: 10.1093/ajcp/aqaa062. - DOI - PMC - PubMed
    1. CAO X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3. - DOI - PMC - PubMed
    1. CHAN JF, KOK KH, ZHU Z, CHU H, TO KK, YUAN S, YUEN KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. - DOI - PMC - PubMed
    1. CHEN G, WU D, GUO W, CAO Y, HUANG D, WANG H, WANG T, ZHANG X, CHEN H, YU H, ZHANG X, ZHANG M, WU S, SONG J, CHEN T, HAN M, LI S, LUO X, ZHAO J, NING Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–2629. doi: 10.1172/JCI137244. - DOI - PMC - PubMed
    1. CLEMENTZ MA, CHEN Z, BANACH BS, WANG Y, SUN L, RATIA K, BAEZ-SANTOS YM, WANG J, TAKAYAMA J, GHOSH AK, LI K, MESECAR AD, BAKER SC. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol. 2010;84:4619–4629. doi: 10.1128/JVI.02406-09. - DOI - PMC - PubMed