Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:53:133-139.
doi: 10.1016/j.mito.2020.05.008. Epub 2020 May 26.

The accessory subunit of human DNA polymerase γ is required for mitochondrial DNA maintenance and is able to stabilize the catalytic subunit

Affiliations

The accessory subunit of human DNA polymerase γ is required for mitochondrial DNA maintenance and is able to stabilize the catalytic subunit

Yura Do et al. Mitochondrion. 2020 Jul.

Abstract

Human DNA polymerase γ (POLG) is a mitochondria-specific replicative DNA polymerase consisting of a single catalytic subunit, POLGα, and a dimeric accessory subunit, POLGβ. To gain a deeper understanding of the role of POLGβ, we knocked out this protein in cultured human cybrid cells and established numerous knockout clones. POLGβ-knockout clones presented a clear phenotype of mitochondrial DNA loss, indicating that POLGβ is necessary for mitochondrial DNA replication. Moreover, POLGβ-knockout cells showed a severe decrease in POLGα levels and acute suppression of POLGβ expression efficiently down-regulated POLGα levels. These results suggest that, in addition to its role as the processivity factor of POLG, POLGβ acts as a POLGα stabilizer, an important role for POLGβ in mitochondrial DNA maintenance.

Keywords: Cybrid cells; DNA polymerase γ; Mitochondrial DNA; MtDNA replication; POLGβ.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

LinkOut - more resources