Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases
- PMID: 32471202
- PMCID: PMC7312611
- DOI: 10.3390/ijms21113797
Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases
Abstract
In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy. Studies to engineer the preference of artificial electron acceptors are categorized into three different approaches: (1) engineering of the charge at the residues around the substrate entrance, (2) engineering of a cavity in the vicinity of flavin, and (3) decreasing the glycosylation degree of enzymes. Among these approaches, altering the charge in the vicinity where the electron acceptor may be accessed will be most relevant.
Keywords: bioelectrochemistry; dehydrogenase; electron acceptor; enzyme engineering; flavin adenine dinucleotide; flavin mononucleotide; oxidase; oxidative half-reaction; oxygen; oxygen accessible pathway.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes.Trends Biochem Sci. 2006 May;31(5):276-83. doi: 10.1016/j.tibs.2006.03.003. Epub 2006 Apr 5. Trends Biochem Sci. 2006. PMID: 16600599 Review.
-
Resonance Raman spectroscopy.Methods Mol Biol. 2014;1146:377-400. doi: 10.1007/978-1-4939-0452-5_15. Methods Mol Biol. 2014. PMID: 24764099
-
Ultrafast photooxidation of protein-bound anionic flavin radicals.Proc Natl Acad Sci U S A. 2022 Feb 22;119(8):e2118924119. doi: 10.1073/pnas.2118924119. Proc Natl Acad Sci U S A. 2022. PMID: 35181610 Free PMC article.
-
Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.Biochemistry. 1999 Feb 16;38(7):1977-89. doi: 10.1021/bi9820917. Biochemistry. 1999. PMID: 10026281
-
The growing VAO flavoprotein family.Arch Biochem Biophys. 2008 Jun 15;474(2):292-301. doi: 10.1016/j.abb.2008.01.027. Epub 2008 Feb 6. Arch Biochem Biophys. 2008. PMID: 18280246 Review.
Cited by
-
Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases.Appl Environ Microbiol. 2023 May 31;89(5):e0184422. doi: 10.1128/aem.01844-22. Epub 2023 May 8. Appl Environ Microbiol. 2023. PMID: 37154753 Free PMC article.
-
Structure of lactate oxidase from Enterococcus hirae revealed new aspects of active site loop function: Product-inhibition mechanism and oxygen gatekeeper.Protein Sci. 2022 Oct;31(10):e4434. doi: 10.1002/pro.4434. Protein Sci. 2022. PMID: 36173159 Free PMC article.
-
Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.Microb Biotechnol. 2021 Jul;14(4):1613-1626. doi: 10.1111/1751-7915.13827. Epub 2021 May 17. Microb Biotechnol. 2021. PMID: 34000093 Free PMC article.
-
Rational Design of a Flavoenzyme for Aerobic Nicotine Catabolism.bioRxiv [Preprint]. 2024 Jul 11:2024.07.11.603087. doi: 10.1101/2024.07.11.603087. bioRxiv. 2024. Update in: mBio. 2024 Oct 16;15(10):e0205024. doi: 10.1128/mbio.02050-24. PMID: 39026806 Free PMC article. Updated. Preprint.
References
-
- Martens N., Hindle A., Hall E.A.H. An assessment of mediators as oxidants for glucose oxidase in the presence of oxygen. Biosens. Bioelectron. 1995;10:393–403. doi: 10.1016/0956-5663(95)96857-U. - DOI
-
- Trampitsch C., Slavica A., Riethorst W., Nidetzky B. Reaction of Trigonopsis variabilis D-amino acid oxidase with 2,6-dichloroindophenol: Kinetic characterisation and development of an oxygen-independent assay of the enzyme activity. J. Mol. Catal. B Enzym. 2005;32:271–278. doi: 10.1016/j.molcatb.2004.12.011. - DOI
-
- Kenausis G., Taylor C., Katakis I., Heller A. ‘Wiring’ of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with [Os(4,4[prime or minute]-dimethoxy-2,2[prime or minute]-bipyridine)2Cl]+/2+ J. Chem. Soc. Faraday Trans. 1996;92:4131–4136. doi: 10.1039/FT9969204131. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources