Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 May 29;19(1):70.
doi: 10.1186/s12933-020-01044-1.

Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study

Affiliations
Comparative Study

Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study

Yue Gao et al. Cardiovasc Diabetol. .

Abstract

Background: Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that collectively cause an increased risk of type 2 diabetes mellitus (T2DM) and nonatherosclerotic cardiovascular disease. This study aimed to evaluate the role of myocardial steatosis in T2DM patients with or without MetS, as well as the relationship between subclinical left ventricular (LV) myocardial dysfunction and myocardial steatosis.

Methods and materials: We recruited 53 T2DM patients and 20 healthy controls underwent cardiac magnetic resonance examination. All T2DM patients were subdivide into two group: MetS group and non-MetS. LV deformation, perfusion parameters and myocardial triglyceride (TG) content were measured and compared among these three groups. Pearson's and Spearman analysis were performed to investigate the correlation between LV cardiac parameters and myocardial steatosis. The receiver operating characteristic curve (ROC) was performed to illustrate the relationship between myocardial steatosis and LV subclinical myocardial dysfunction.

Results: An increase in myocardial TG content was found in the MetS group compared with that in the other groups (MetS vs. non-MetS: 1.54 ± 0.63% vs. 1.16 ± 0.45%; MetS vs. normal: 1.54 ± 0.63% vs. 0.61 ± 0.22%; all p < 0.001). Furthermore, reduced LV deformation [reduced longitudinal and radial peak strain (PS); all p < 0.017] and microvascular dysfunction [increased time to maximum signal intensity (TTM) and reduced Upslope; all p < 0.017)] was found in the MetS group. Myocardial TG content was positively associated with MetS (r = 0.314, p < 0.001), and it was independently associated with TTM (β = 0.441, p < 0.001) and LV longitudinal PS (β = 0.323, p = 0.021). ROC analysis exhibited that myocardial TG content might predict the risk of decreased LV longitudinal myocardial deformation (AUC = 0.74) and perfusion function (AUC = 0.71).

Conclusion: Myocardial TG content increased in T2DM patients with concurrent MetS. Myocardial steatosis was positively associated with decreased myocardial deformation and perfusion dysfunction, which may be an indicator for predicting diabetic cardiomyopathy.

Keywords: 1H-magnetic resonance spectroscopy; Metabolic syndrome; Myocardial steatosis; Subclinical myocardial dysfunction.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Figures

Fig. 1
Fig. 1
Measurement of myocardial triglyceride content by 1H-MRS. Left 4-chamber and 2-chamber cardiac image. The signal voxel was positioned at the interventricular septum in meddle slice. Myocardial triglyceride content was calculated as a percentage related to water and expressed
Fig. 2
Fig. 2
Differences in myocardial triglyceride content (a), LV longitudinal PS (b), LV radial PS (c), upslope (d) and TTM (e) among patients in T2DM with MetS, T2DM without MetS, and normal subjects. *p < 0.017
Fig. 3
Fig. 3
Relationship between myocardial triglyceride content and LV longitudinal PS, TTM and upslope
Fig. 4
Fig. 4
Receiver operating characteristic curve (ROC) analysis to predict the relationship between the myocardial triglyceride content and TTM (a), LV longitudinal PS (b)

Similar articles

Cited by

References

    1. Mauger C, Gilbert K, Lee AM, et al. Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank. J Cardiovasc Magn Reson. 2019;21(1):41. - PMC - PubMed
    1. Yoneyama K, Venkatesh BA, Wu CO, Mewton N, Gjesdal O, Kishi S, McClelland RL, Bluemke DA, Lima JA. Diabetes mellitus and insulin resistance associate with left ventricular shape and torsion by cardiovascular magnetic resonance imaging in asymptomatic individuals from the multi-ethnic study of atherosclerosis. J Cardiovasc Magn Reson. 2018;187(4177):652–653. - PMC - PubMed
    1. Korosoglou G, Humpert PM, Ahrens J, et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging. 2012;35(4):804–811. - PubMed
    1. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and Management of the Metabolic Syndrome An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2006;112:2735–2752. - PubMed
    1. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12. - PubMed

Publication types

MeSH terms