Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr:117:70-88.
doi: 10.1016/j.pnmrs.2019.12.001. Epub 2019 Dec 21.

Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective

Affiliations
Review

Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective

Federico De Biasi et al. Prog Nucl Magn Reson Spectrosc. 2020 Apr.

Abstract

Sensing methodologies for the detection of target compounds in mixtures are important in many different contexts, ranging from medical diagnosis to environmental analysis and quality assessment. Ideally, such detection methods should allow for both identification and quantification of the targets, minimizing the possibility of false positives. With very few exceptions, most of the available sensing techniques rely on the selective interaction of the analyte with some detector, which in turn produces a signal as a result of the interaction. This approach hence provides indirect information on the targets, whose identity is generally ensured by comparison with known standards, if available, or by the selectivity of the sensor system itself. Pursuing a different approach, NMR chemosensing aims at generating signals directly from the analytes, in the form of a (complete) NMR spectrum. In this way, not only are the targets unequivocally identified, but it also becomes possible to identify and assign the structures of unknown species. In this review we show how relaxation- and diffusion-based NMR techniques, assisted by appropriate nanoparticles, can be used to edit the 1H NMR spectrum of a mixture and extract the signals of specific target compounds. Monolayer-protected nanoparticles, in particular those made from gold, are well suited to this task because they provide a versatile, protein-size support to build or incorporate supramolecular receptors. Remarkably, the self-organized and multifunctional nature of the nanoparticle coating allows exploitation of different kinds of non-covalent interactions, to provide tailored binding sites for virtually any class of molecules. From the NMR standpoint, the reduced translational and rotational diffusion rates of bulky nanoparticles offer a way to manipulate the states of the monolayer spins and build a reservoir of magnetization that can be selectively transferred to the interacting analytes. In addition, the low correlation time and the enhanced rigidity of the coating molecules (due to their grafting and crowding on the particle surface) promote efficient spin diffusion, useful in saturation transfer experiments. The optimized combination of NMR experiments and nanoreceptors can ultimately allow the detection of relevant analytes in the micromolar concentration range, paving the way to applications in the diagnostic field and beyond.

Keywords: Complex mixtures; DOSY; Gold nanoparticles; Matrix-assisted NMR; Mixture analysis; Monolayer-protected nanoparticles; NMR diffusometry; NOE; Saturation transfer difference.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources