Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes
- PMID: 32472025
- DOI: 10.1038/s41430-020-0666-8
Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes
Erratum in
-
Correction: Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes.Eur J Clin Nutr. 2024 Dec;78(12):1114. doi: 10.1038/s41430-024-01483-z. Eur J Clin Nutr. 2024. PMID: 39179655 No abstract available.
Abstract
Background/objective: Knowing the distribution of lean soft tissue (LST) among the body segments is of relevance for optimizing athletic performance, monitoring response to training, and for evaluating injury risk. Bioelectrical impedance (BIA) is a portable, low cost, and easy technique to assess body composition. However, most equations used by BIA to predict LST are not specific for the athlete population. The aim of this investigation was to develop and validate equations to estimate dual-energy X-ray absorptiometry (DXA) appendicular LST of the arms and legs based on whole-body BIA in athletes.
Methods: Arms and legs LST were assessed by DXA and whole-body reactance (Xc) and resistance (R) were measured by BIA in athletes from various sports. Using measures of height, the resistance index (RI) (RI = height2/R) was calculated. Prediction equations were established using a cross-validation method where 177 athletes (2/3 of sample) were used for equation development and the remaining 88 athletes (1/3 of sample) were used for equation validation.
Results: The developed prediction equations were as follows: arm LST = 0.940 × sex (0 = male; 1 = female) + 0.042 × total body weight (kg) + 0.080 × RI + 0.024 × Xc - 3.927; leg LST = 1.983 × sex (0 = male; 1 = female) + 0.154 × total body weight (kg) + 0.127 × RI - 1.147. Both equations validated well for the arms (mean difference = 0.11 kg, R2 = 0.89, pure error (PE) = 0.61) and for the legs (mean difference = 0.05 kg, R2 = 0.81, PE = 1.93 kg). There were no differences (p > 0.05) in the mean observed and predicted LST for the arms and legs.
Conclusion: The developed BIA-based prediction equations provide a valid estimation of upper and lower body LST in athletes.
References
-
- Raymond CJ, Dengel DR, Bosch TA. Total and segmental body composition examination in collegiate football players using multifrequency bioelectrical impedance analysis and dual X-ray absorptiometry. J Strength Cond Res. 2018;32:772–82. - DOI
-
- Gonzalez MC, Barbosa-Silva TG, Heymsfield SB. Bioelectrical impedance analysis in the assessment of sarcopenia. Curr Opin Clin Nutr Metab Care. 2018;21:366–74. - DOI
-
- Bilsborough JC, Greenway K, Opar D, Livingstone S, Cordy J, Coutts AJ. The accuracy and precision of DXA for assessing body composition in team sport athletes. J Sports Sci. 2014;32:1821–8. - DOI
-
- Fuller NJ, Laskey MA, Elia M. Assessment of the composition of major body regions by dual-energy X-ray absorptiometry (DEXA), with special reference to limb muscle mass. Clin Physiol. 1992;12:253–66. - DOI
-
- Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23:1430–53. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
