Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 29;11(1):2800.
doi: 10.1038/s41467-020-16670-2.

Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients

Collaborators, Affiliations

Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients

Po Ying Chia et al. Nat Commun. .

Abstract

Understanding the particle size distribution in the air and patterns of environmental contamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA. Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms have at least one environmental surface contaminated. High touch surface contamination is shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond the first week of illness (p = 0.01, χ2 test). Air sampling is performed in three of the 27 AIIRs in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and 1-4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants further study of the airborne transmission potential of SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

The authors have no competing interests as defined by Nature Research, or other interests that might be perceived to influence the results and/or discussion reported in this paper. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Figures

Fig. 1
Fig. 1. Percentage of contaminated swabs from surface samples, in rooms with any contamination.
All sites were n = 17, except for air exhaust vents where n = 5.
Fig. 2
Fig. 2. Extent of environmental contamination correlated with day of illness timepoint.
a Percentage of patients with contamination of high-touch surfaces in the first week of illness compared with more than first week of illness, n = 15 in both groups. b Percentage of surfaces contaminated across weeks of illness with median and 95% confidence intervals. c. Percentage of high-touch surfaces contaminated across weeks of illness with median and 95% confidence intervals.
Fig. 3
Fig. 3. Patient and disease factors affecting percentage of high-touch contamination.
a Mean percentage of high-touch surface contaminated by day of illness with 95% confidence interval with best fit curve, n = 30. b Percentage of high-touch surfaces contaminated by clinical cycle threshold values with 95% confidence interval with bestfit curve, n = 30. c Mean percentage of high-touch surface contaminated by day of illness with 95% confidence interval grouped by symptoms, n = 30.

Comment in

References

    1. Ong Sean Wei Xiang, Tan Yian Kim, Chia Po Ying, Lee Tau Hong, Ng Oon Tek, Wong Michelle Su Yen, Marimuthu Kalisvar. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020;323(16):1610. doi: 10.1001/jama.2020.3227. - DOI - PMC - PubMed
    1. Young Barnaby Edward, Ong Sean Wei Xiang, Kalimuddin Shirin, Low Jenny G., Tan Seow Yen, Loh Jiashen, Ng Oon-Tek, Marimuthu Kalisvar, Ang Li Wei, Mak Tze Minn, Lau Sok Kiang, Anderson Danielle E., Chan Kian Sing, Tan Thean Yen, Ng Tong Yong, Cui Lin, Said Zubaidah, Kurupatham Lalitha, Chen Mark I-Cheng, Chan Monica, Vasoo Shawn, Wang Lin-Fa, Tan Boon Huan, Lin Raymond Tzer Pin, Lee Vernon Jian Ming, Leo Yee-Sin, Lye David Chien. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488. doi: 10.1001/jama.2020.3204. - DOI - PMC - PubMed
    1. Chan Jasper Fuk-Woo, Yuan Shuofeng, Kok Kin-Hang, To Kelvin Kai-Wang, Chu Hin, Yang Jin, Xing Fanfan, Liu Jieling, Yip Cyril Chik-Yan, Poon Rosana Wing-Shan, Tsoi Hoi-Wah, Lo Simon Kam-Fai, Chan Kwok-Hung, Poon Vincent Kwok-Man, Chan Wan-Mui, Ip Jonathan Daniel, Cai Jian-Piao, Cheng Vincent Chi-Chung, Chen Honglin, Hui Christopher Kim-Ming, Yuen Kwok-Yung. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9. - DOI - PMC - PubMed
    1. Pan Xingfei, Chen Dexiong, Xia Yong, Wu Xinwei, Li Tangsheng, Ou Xueting, Zhou Liyang, Liu Jing. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. The Lancet Infectious Diseases. 2020;20(4):410–411. doi: 10.1016/S1473-3099(20)30114-6. - DOI - PMC - PubMed
    1. Bai Yan, Yao Lingsheng, Wei Tao, Tian Fei, Jin Dong-Yan, Chen Lijuan, Wang Meiyun. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020;323(14):1406. doi: 10.1001/jama.2020.2565. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances