Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;38(2):508-523.
doi: 10.1007/s12640-020-00209-w. Epub 2020 May 29.

Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice

Affiliations

Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice

Zhipeng Qi et al. Neurotox Res. 2020 Aug.

Erratum in

Abstract

Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 μM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 μM or 15 mg/kg) and riluzole (100 μM or 32 μmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 μM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.

Keywords: Ephrin-A3; Excitotoxicity; Fluoxetine; GLAST; GLT-1; Manganese.

PubMed Disclaimer

References

    1. Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58(2):730–735 - PubMed
    1. Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120(1):89–94 - PubMed
    1. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 106(30):12524–12529 - PubMed - PMC
    1. Chen Y, Fu AK, Ip NY (2012) Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24(3):606–611 - PubMed
    1. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51(2):295–310 - PubMed

MeSH terms

LinkOut - more resources