Latent Class Trajectory Modeling of 2-Component Disease Activity Score in 28 Joints Identifies Multiple Rheumatoid Arthritis Phenotypes of Response to Biologic Disease-Modifying Antirheumatic Drugs
- PMID: 32475078
- DOI: 10.1002/art.41379
Latent Class Trajectory Modeling of 2-Component Disease Activity Score in 28 Joints Identifies Multiple Rheumatoid Arthritis Phenotypes of Response to Biologic Disease-Modifying Antirheumatic Drugs
Abstract
Objective: To determine whether using a reweighted disease activity score that better reflects joint synovitis, i.e., the 2-component Disease Activity Score in 28 joints (DAS28) (based on swollen joint count and C-reactive protein level), produces more clinically relevant treatment outcome trajectories compared to the standard 4-component DAS28.
Methods: Latent class mixed modeling of response to biologic treatment was applied to 2,991 rheumatoid arthritis (RA) patients in whom treatment with a biologic disease-modifying antirheumatic drug was being initiated within the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate cohort, using both 4-component and 2-component DAS28 scores as outcome measures. Patient groups with similar trajectories were compared in terms of pretreatment baseline characteristics (including disability and comorbidities) and follow-up characteristics (including antidrug antibody events, adherence to treatments, and blood drug levels). We compared the trajectories obtained using the 4- and 2-component scores to determine which characteristics were better captured by each.
Results: Using the 4-component DAS28, we identified 3 trajectory groups, which is consistent with previous findings. We showed that the 4-component DAS28 captures information relating to depression. Using the 2-component DAS28, 7 trajectory groups were identified; among them, distinct groups of nonresponders had a higher incidence of respiratory comorbidities and a higher proportion of antidrug antibody events. We also identified a group of patients for whom the 2-component DAS28 scores remained relatively low; this group included a high percentage of patients who were nonadherent to treatment. This highlights the utility of both the 4- and 2-component DAS28 for monitoring different components of disease activity.
Conclusion: Here we show that the 2-component modified DAS28 defines important biologic and clinical phenotypes associated with treatment outcome in RA and characterizes important underlying response mechanisms to biologic drugs.
© 2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.
References
-
- Giannoula A, Gutierrez-Sacristán A, Bravo Á, Sanz F, Furlong LI. Identifying temporal patterns in patient disease trajectories using dynamic time warping: a population-based study. Sci Rep 2018;8:4216.
-
- Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H, et al. Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat Commun 2014;5:4022.
-
- Defossez G, Rollet A, Dameron O, Ingrand P. Temporal representation of care trajectories of cancer patients using data from a regional information system: an application in breast cancer. BMC Med Inform Decis Mak 2014;14:24.
-
- Joyce DW, Kehagia AA, Tracy DK, Proctor J, Shergill SS. Realising stratified psychiatry using multidimensional signatures and trajectories. J Transl Med 2017;15:15.
-
- Edwards RR, Dworkin RH, Turk DC, Angst MS, Dionne R, Freeman R, et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain 2016;157:1851-71.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials