Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 1;21(1):14.
doi: 10.1186/s40510-020-00314-8.

Orthodontic bonding procedures significantly influence biofilm composition

Affiliations

Orthodontic bonding procedures significantly influence biofilm composition

Da-Mi Jeon et al. Prog Orthod. .

Abstract

Background: Because changes in surface properties affect bacterial adhesion, orthodontic bonding procedures may significantly influence biofilm formation and composition around orthodontic appliances. However, most studies used a mono-species biofilm model under static conditions, which does not simulate the intraoral environment and complex interactions of oral microflora because the oral cavity is a diverse and changeable environment. In this study, a multi-species biofilm model was used under dynamic culture conditions to assess the effects of the orthodontic bonding procedure on biofilm formation and compositional changes in two main oral pathogens, Streptococcus mutans and Porphyromonas gingivalis.

Methods: Four specimens were prepared with bovine incisors and bonding adhesive: untreated enamel surface (BI), enamel surface etched with 37% phosphoric acid (ET), primed enamel surface after etching (PR), and adhesive surface (AD). Surface roughness (SR), surface wettability (SW), and surface texture were evaluated. A multi-species biofilm was developed on each surface and adhesion amounts of Streptococcus mutans, Porphyromonas gingivalis, and total bacteria were analyzed at day 1 and day 4 using real-time polymerase chain reaction. After determining the differences in biofilm formation, SR, and SW between the four surfaces, relationships between bacteria levels and surface properties were analyzed.

Results: The order of SR was AD < PR < BI < ET, as BI and ET showed more irregular surface texture than PR and AD. For SW, ET had the greatest value followed by PR, BI, and AD. S. mutans and P. gingivalis showed greater adhesion to BI and ET with rougher and more wettable surfaces than to AD with smoother and less wettable surfaces. The adhesion of total bacteria and S. mutans significantly increased over time, but the amount of P. gingivalis decreased. The adhesion amounts of all bacteria were positively correlated with SR and SW, irrespective of incubation time.

Conclusions: Within the limitations of this study, changes in SR and SW associated with orthodontic bonding had significant effects on biofilm formation and composition of S. mutans and P. gingivalis.

Keywords: Biofilm; Composition; Orthodontic bonding; Surface roughness; Surface wettability.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Scanning electron microscopy images with respect to surface type. a Untreated bovine incisor at × 500 magnification; b etched bovine incisor at × 500 magnification; c primed bovine incisor at × 500 magnification; d Transbond XT adhesive at × 500 magnification; e untreated bovine incisor at × 3000 magnification; f etched bovine incisor at × 3000 magnification; g primed bovine incisor at × 3000 magnification; h Transbond XT adhesive at × 3000 magnification

Similar articles

Cited by

References

    1. Low B, Lee W, Seneviratne CJ, Samaranayake LP, Hagg U. Ultrastructure and morphology of biofilms on thermoplastic orthodontic appliances in ‘fast’ and ‘slow’ plaque formers. Eur J Orthod. 2011;33:577–583. doi: 10.1093/ejo/cjq126. - DOI - PubMed
    1. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ., Jr Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66:486–505. doi: 10.1128/MMBR.66.3.486-505.2002. - DOI - PMC - PubMed
    1. An JS, Kim K, Cho S, Lim BS, Ahn SJ. Compositional differences in multi-species biofilms formed on various orthodontic adhesives. Eur J Orthod. 2017;39:528–533. doi: 10.1093/ejo/cjw089. - DOI - PubMed
    1. Lucchese A, Bondemark L, Marcolina M, Manuelli M. Changes in oral microbiota due to orthodontic appliances: a systematic review. J Oral Microbiol. 2018;10:1476645. doi: 10.1080/20002297.2018.1476645. - DOI - PMC - PubMed
    1. Metin-Gursoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release. Eur J Orthod. 2017;39:9–16. doi: 10.1093/ejo/cjv097. - DOI - PubMed

LinkOut - more resources